
Bayesian Neural Networks
for Text Classification and Regression

Wilker Aziz
ILLC @ UvA

Let’s predict hate speech

Remember this exercise from week 2b?

Data We have a dataset of observations of the kind (x , y) where x is a
relatively short piece of text and y is a binary flag that indicates the presence of
hate speech.
Model Y |θ, x ∼ Bern(f (x ; θ)) where f is an NN
Problem It looks like sometimes the classifier makes mistakes. We are asked to
provide the model’s uncertainty about its predictions.

Options

1 We can report the probability p(y |x , θ) which can be easily obtained from
our model. We are happy to have chosen a probabilistic approach!

2 Our model does not support a meaningful notion of uncertainty, it predicts
probability distributions deterministically and therefore the probabilities
themselves have no variance. We need another module from DL4NLP!

Probabll BNNs 1 / 80

This may shock you, but p(y |x , θ) is not an uncertainty estimate.

Here is the source of confusion. A decision y , given x and θ, is not what
the model predicts. The model predicts a probability value p(y |x , θ), or
more generally, a probability distribution Y |x , θ. This prediction is itself
deterministic and therefore has no variance. In a strong sense, f (x ; θ) is
absolutely certain about the probability value it’s predicted.

Intuition Would you take Donald Trump’s word on his involvement in
corruption? Would your answer change should Donald Trump say “Oh, I
am 1000% sure I am not involved in corruption. And by the way, I bet
you’ve never seen a probability so large, it is, it is so large, it’s huge,
seriously, best probability ever”.

Uncertainty

A parameter, along with NN architectures and every assumption we
make, singles out a function f (x ; θ).

Deeper down it also specifies another function, namely, the probability
mass/density function p(y |x , θ) that assigns likelihood to observations.

Perturbing the parameter, even just a little, may reveal that this function
changes dramatically for certain x .

But why should we care about a perturbation in parameter space? After
all, haven’t we chosen our parameters for a reason?

Probabll BNNs 2 / 80

For example, |f (x ; θ + ε)− f (x ; θ)| may be very large!

Some parameter estimation algorithm gives us θ, and it is pretty clear all
throughout training that many different instances of θ can do just as well
(under our criterion, say likelihood). So small perturbations in parameter
around our solution should not be so frowned upon.

I’d actually stretch and say perturbations should not be frowned upon, no
matter how tiny or large (something like Euclidean distance in parameter
space is quite irrelevant here).

Uncertainty

But I want to make a strong argument. So, let’s choose perturbed
parameters very carefully.

Say we have a stochastic process that generates instances of θ that are
supported by our data D. This hypothetical process denoted Θ|D sees
data and narrows our parameter options to good parameters only.

Imagine a random variable Q = p(y∗|x∗, θ) for some novel (x∗, y∗), where
θ is a sample from the hypothetical process Θ|D.

If Var(Q) is large, the model knows very little about the probability of y∗
given x∗. Think of it this way, our very best instances of θ, those which
are very likely given D, fail at assigning a reasonably consistent probability
value to the data point.

Probabll BNNs 3 / 80

How can we obtain such a conditional view Θ|D?

Maybe x∗ is in a region of X that’s barely represented in D.

Uncertainty

A model’s assessment of its own uncertainty is not the likelihood value
p(y |x , θ), nor the related quantity Var(Y |x , θ).

Instead, it’s the distribution of that likelihood value for instances of θ that
are likely given all data we have already observed.

Uncertainty is represented by Y∗|x∗,D and can be quantified, for example,
by Var(Y∗|x∗,D).

Probabll BNNs 4 / 80

Variance of Y |x ,D is about uncertainty, variance of Y |x , θ is just about
likelihood.

For a moment, let me useM to explicitly denote all of our model assump-
tions (i.e., conditional independencies, parametric families, NN architec-
tures). Then

• Var(Y |X = x ,D,M) is an assessment of the uncertainty of a model
M about Y given x taking into account all hypotheses supported
by a set of observations D;

• Var(Y |X = x ,Θ = θ,M) is the variance of Y given x under a
specific hypothesis θ compatible with model M;
The data D plays no role here (except perhaps indirectly via an
algorithm for picking θ).

Uncertainty is represented/captured by the distribution of a random vari-
able. Uncertainty about unobserved rvs thus requires a Bayesian view of
the world. Luckily for us, Bayesian theory requires very little more than
axiomatic probability theory (Bernardo and Smith, 2009). Well, and a bit
of creativity to approximate some tough computations.

Outline

1 Bayes: what and why?

2 Choosing a prior

3 Posterior Inference for BNNs

4 Bayesian Dropout

5 Example

Bayes: what and why?

Bayes: what and why?

In this section we aim to answer

What is a Bayesian neural net (BNN)?

Why should we care about them?

Probabll BNNs 5 / 80

Bayes: what and why?

What’s a BNN?

BNN

x y θ

α

|D|

Regression

Y |θ, x ∼ N (µ(x ; θ), σ(x ; θ)2)

Classification

Y |θ, x ∼ Cat(π(x ; θ))

with for example θ ∼ N (0, I︸︷︷︸
α

)

as before, NNs power the mapping from x and θ to p(y |x , θ)

though now θ is a random variable
distributed according to a prior p(θ|α)

Probabll BNNs 6 / 80

Just a joint distribution!

Observations are rvs, and parameters are rvs.

In a Bayesian model, data and parameters are no different. They are all
given random treatment. The only substantial difference, being observed
or not, has no effect in the theory. Read it this way: the set of principles
is the same (axiomatic probability theory), there is no need for context-
dependent patches.

In a Bayesian model, the prior parameter α, sometimes called a hyper-
parameter, is typically fixed (or itself governed by a distribution, whose
parameter is fixed (or, itself governed by a distribution, whose parameter
is fixed (or ...))).

A BNN is a Bayesian model with NN-parameterised likelihood.

Bayes: what and why?

NNs and BNNs side by side

Probabilistic models powered by
NN

x y θ

|D|

BNN

x y θ

α

|D|

NN: assumes θ to be given

BNN: all variables are treated alike, that is, they are random variables
whether or not we call them parameters

BNNs also have deterministic parameters (e.g α)
we call those hyperparameters and they are ideally fixed

Probabll BNNs 7 / 80

Let’s recap

• we have a likelihood p(x |θ), with which we can assign probability p(D|θ) to
data D

• we have a prior p(θ|α), it restricts the ‘possible worlds’ to some worlds that are
plausible a priori (that is, before we look at this particular data D)

• together they induce a joint distribution p(D, θ|α)

• whose marginal p(D|α) =
∫
p(θ|α)p(D|θ)dθ we also call evidence

NNs: parameters θ are known and given, which means, we need to find them somewhere.
This view is so widespread that is common to think that optimisation and learning are
the same thing.

BNNs: parameters θ are random and sampled from a prior. There’s no search, there’s no
need for searching. Every single query of interest takes nothing but probability calculus.
Here learning dispenses with optimisation.

Some Bayesians do optimise hyperparameters α, say using maximum (marginal) like-
lihood estimation arg maxα log p(D|θ). Those Bayesians are known as Empirical
Bayesians. There’s something funny about this term, it makes it look like being Bayesian
precludes empirical considerations. There’s nothing un-empirical about Bayes.

Bayes: what and why?

Bayes

Being Bayesian seems to require specifying a prior distribution over
parameters, though it’s more than that

it’s about acknowledging that most quantities are unknown

and proceeding to reason probabilistically under uncertainty

priors are a means to this end, they specify what kinds of values are
reasonable and with what expectation

as we will see, acknowledging uncertainty and treating it seriously
requires probabilistic inference

Probabll BNNs 8 / 80

Why am I emphasising this? You will find arguments of the kind “this regularisation
is equivalent to that prior”. The connection between a regulariser and a prior does
not confer any Bayesian-type credibility to a non-Bayesian algorithm. These claims are
usually made in the context of parameter estimation, they mostly only hold asymptoti-
cally (access to infinite data) and at global optima. Are these assumptions reasonable
enough to justify some weak connection to Bayes? What’s the purpose of the con-
nection anyway? For example, remarking a connection for it inspires changes to the
algorithm could be a good reason. Attempting to impose a perception of principledness
is far less useful. In ML we have to compromise here and there all the time, there
should be no shame in that. Still, motivating our compromises matters, it informs our
peers, and we should make careful use of superficially powerful claims, after all, our
goals include communicating research clearly.

Why do we call it a theory? Isn’t it just a tool? A type of probability calculus? The
motivations for the Bayesian paradigm are rooted in a theory of rational decision making
under uncertainty, and in that sense it does go beyond probability calculus: it adds a
semantic layer to it with philosophical implications (Bernardo and Smith, 2009). If you
want to concentrate on statistical and practical data analysis implications, a textbook
like BDA3 (Gelman et al., 2013) is more appropriate.

Bayes: what and why?

Why Bayes?

A fairly practical reason for Bayes stems from a question such as? How
can we quantify the model’s uncertainty about a prediction?

Wouldn’t it be useful to shed light onto

when do we know we can trust the model for a given pair (x , y)?

Probabll BNNs 9 / 80

When I say prediction, does anyone still think of the following?

y∗ = arg max
y

p(y |x∗, θ)

If so, let’s agree on some terminology. This is a decision rule (it is not
even the only one possible) and it relies on the likelihood p(y |x∗, θ)

• think of the likelihood as a prediction on its own right

• an NN parameterised by θ has predicted this value from x∗

When Bayes? This is not like choosing your favourite cake, you can be
objective about this. If Bayesian computations posed no challenging, I’d
feel more like telling you always Bayes, at least, whenever your data are
outcomes of random experiments. But that’s not reality. So, learn about
Bayes and decide when it’s worth the trouble. That applies to all of our
tools, doesn’t it? Sometimes an NN is not worth the trouble: the time
you save not acquiring expert knowledge about the problem goes to waste
in silly numerical instability and fighting overfitting with extremely limited
theoretical guidance.

Bayes: what and why?

The importance of knowing what we don’t know

If p(y∗|x∗, θ) is not about uncertainty, then what is?

When a data point is well supported by θ, that is, p(y∗|x∗, θ) is high, we
should ask ourselves, is θ even supported by the evidence we have?

In other words, we are interested in the posterior distribution Θ|D, α:

p(θ|D, α) =
p(θ,D|α)

p(D|α)

To be able to get to it, we need to accept that θ is random, acknowledge
that we don’t know much more about it than what can be coded in a prior
p(θ|α), and proceed to reassess our beliefs in light of data D.

“The importance of knowing what we don’t know” (Gal, 2016, Chapter 1).
Probabll BNNs 10 / 80

The loss landscape of NNs are full of large valleys: different parameters
incur similar (possibly very little) loss, but give rise to different functions
(Garipov et al., 2018). Though these functions perform well, they make
meaningfully different predictions on test data. How do they differ away
from training data? Can we even attempt to answer this questions if we
have a single function?

Bayes: what and why?

Uncertainty illustrated

Y

X

Suppose a regression problem for which we have observations

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

Let’s approach with the help of NNs, i.e. y = NN(x ; θ)

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

By design, it extrapolates predictions to unseen inputs, e.g. x∗

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

Can we trust our model given x∗ is far from observations?

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

Let’s fit Gaussians, i.e. N (µ(x ; θ), σ(x ; θ)2), around targets

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

Note that we never observe much variability for a given input x

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

µ(x ; θ) learns to be on average close to every response for x

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

σ(x ; θ) instead learns to cover all responses for x , but no more

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

for MLE does not like covering more than observed responses

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

What is our expectation for σ(x∗; θ)?

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

For all we know, σ(·; θ) likes to predict small values

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

σ(·; θ) seriously underestimates uncertainty for x∗

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

𝛉(1)

but what if, with probability p(θ(1)|D), we consulted µ(x ; θ(1))?

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

𝛉(2)
𝛉(1)

and µ(x ; θ(2)), with probability p(θ(2)|D)

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

𝛉(2)
𝛉(1)

𝛉(3)

and µ(x ; θ(3)), with probability p(θ(3)|D)

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

𝛉(2)
𝛉(1)

𝛉(3)

𝛉(4)

and µ(x ; θ(4)), with probability p(θ(4)|D)

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

𝛉(2)
𝛉(1)

𝛉(3)

𝛉(4)

𝛉(5)

and µ(x ; θ(5)), with probability p(θ(5)|D)

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

𝛉(2)
𝛉(1)

𝛉(3)

𝛉(4)

𝛉(5)

𝛉(6)

and µ(x ; θ(6)), with probability p(θ(6)|D)?

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Uncertainty illustrated

Y

X

Suddenly, we are a lot less certain about predictions for x∗

Probabll BNNs 11 / 80

Here we have data points for some regression problem which we could use to fit an NN
(let’s say we start with MSE).

• NNs are deterministic and cannot deal with observed variance. See the darker
crosses overlapping the lighter crosses? Those are identical inputs with different
responses. Best an NN can do is to predict the average response.

• We use NNs (or ML in general) exactly because we hope to generalise some
meaningful pattern to unseen inputs. One may query the model about an input
that is far removed from the observed data. What should we do there?

• It looks like we need a mechanism to assess how much the mode knows about
the input.

• We know how to fit likelihood-based models, so let’s model the data as
conditionally Gaussian and learn to predict both Gaussian parameters.

• It’s hard to expect a model will learn to predict a pattern it does not observe.
And look at this, we never observe much variance.

• The Gaussian model looks better than MSE, but only where we have data.

• Ditch the idea of prediction variance. Instead, we impose a prior on θ and infer
a posterior distribution given all of our observed data. Now let’s consult
patterns that are likely given data.

• You may be thinking ‘hold on if I sample some NN parameters, I don’t just get
lucky and approximate observed responses well’, but recall, you are sampling
from Θ|D, α, these are the curves that are likely given data.

• This is showing a much more realistic picture about x∗, isn’t it?

Bayes: what and why?

Oh... This is a Fancy Ensemble?

Not really, ensembles reduce stochasticity of prediction to
data-independent initial conditions.

For example, an ensemble might combine K independently converged
maximum likelihood estimates (each time using a different random

initalisation θ
(i)
0):

some will ensemble parameters of the likelihood:

µ(x∗) = 1
K

∑K
i=1 µ(x∗; θ

(i)) for θ(i) = MLE(D, θ(i)
0)

this can disregard any spread the MLE solutions might have captured

others will ensemble likelihood assessments:
1
K

∑K
i=1 p(y∗|x∗, θ(i)) for θ(i) = MLE(D, θ(i)

0)
this requires a prediction a specific query y∗

Probabll BNNs 12 / 80

I want to say yes, because if we are going to talk about ‘ensembles’, then
I feel like I owe a word such as ‘fancy’ to Bayes.

But honestly, I don’t feel like using the word ‘fancy’, because marginal and
conditional probabilities are pretty basic.

Finally, I’m not sure it’s fair to explain something self-consistent (i.e., prob-
ability calculus) in terms of such a vaguely specified notion (i.e., ensem-
bling). Perhaps we should explain ensembling as an attempt at probability
calculus?

But let’s build intuition, and expose differences!

• Contrast this with stochasticity due to assessments of µ(x∗; θ) or
p(y∗|x∗, θ) for θ ∼ Θ|D, α

Bayes: what and why?

Oh... This is a Fancy Ensemble?

Not really, ensembles reduce stochasticity of prediction to
data-independent initial conditions.

For example, an ensemble might combine K independently converged
maximum likelihood estimates (each time using a different random

initalisation θ
(i)
0):

some will ensemble parameters of the likelihood:

µ(x∗) = 1
K

∑K
i=1 µ(x∗; θ

(i)) for θ(i) = MLE(D, θ(i)
0)

this can disregard any spread the MLE solutions might have captured

others will ensemble likelihood assessments:
1
K

∑K
i=1 p(y∗|x∗, θ(i)) for θ(i) = MLE(D, θ(i)

0)
this requires a prediction a specific query y∗

Probabll BNNs 12 / 80

I want to say yes, because if we are going to talk about ‘ensembles’, then
I feel like I owe a word such as ‘fancy’ to Bayes.

But honestly, I don’t feel like using the word ‘fancy’, because marginal and
conditional probabilities are pretty basic.

Finally, I’m not sure it’s fair to explain something self-consistent (i.e., prob-
ability calculus) in terms of such a vaguely specified notion (i.e., ensem-
bling). Perhaps we should explain ensembling as an attempt at probability
calculus?

But let’s build intuition, and expose differences!

• Contrast this with stochasticity due to assessments of µ(x∗; θ) or
p(y∗|x∗, θ) for θ ∼ Θ|D, α

Bayes: what and why?

Oh... This is a Fancy Ensemble?

Not really, ensembles reduce stochasticity of prediction to
data-independent initial conditions.

For example, an ensemble might combine K independently converged
maximum likelihood estimates (each time using a different random

initalisation θ
(i)
0):

some will ensemble parameters of the likelihood:

µ(x∗) = 1
K

∑K
i=1 µ(x∗; θ

(i)) for θ(i) = MLE(D, θ(i)
0)

this can disregard any spread the MLE solutions might have captured

others will ensemble likelihood assessments:
1
K

∑K
i=1 p(y∗|x∗, θ(i)) for θ(i) = MLE(D, θ(i)

0)
this requires a prediction a specific query y∗

Probabll BNNs 12 / 80

I want to say yes, because if we are going to talk about ‘ensembles’, then
I feel like I owe a word such as ‘fancy’ to Bayes.

But honestly, I don’t feel like using the word ‘fancy’, because marginal and
conditional probabilities are pretty basic.

Finally, I’m not sure it’s fair to explain something self-consistent (i.e., prob-
ability calculus) in terms of such a vaguely specified notion (i.e., ensem-
bling). Perhaps we should explain ensembling as an attempt at probability
calculus?

But let’s build intuition, and expose differences!

• Contrast this with stochasticity due to assessments of µ(x∗; θ) or
p(y∗|x∗, θ) for θ ∼ Θ|D, α

Bayes: what and why?

Oh... This is a Fancy Ensemble?

Not really, ensembles reduce stochasticity of prediction to
data-independent initial conditions.

For example, an ensemble might combine K independently converged
maximum likelihood estimates (each time using a different random

initalisation θ
(i)
0):

some will ensemble parameters of the likelihood:

µ(x∗) = 1
K

∑K
i=1 µ(x∗; θ

(i)) for θ(i) = MLE(D, θ(i)
0)

this can disregard any spread the MLE solutions might have captured

others will ensemble likelihood assessments:
1
K

∑K
i=1 p(y∗|x∗, θ(i)) for θ(i) = MLE(D, θ(i)

0)
this requires a prediction a specific query y∗

Probabll BNNs 12 / 80

I want to say yes, because if we are going to talk about ‘ensembles’, then
I feel like I owe a word such as ‘fancy’ to Bayes.

But honestly, I don’t feel like using the word ‘fancy’, because marginal and
conditional probabilities are pretty basic.

Finally, I’m not sure it’s fair to explain something self-consistent (i.e., prob-
ability calculus) in terms of such a vaguely specified notion (i.e., ensem-
bling). Perhaps we should explain ensembling as an attempt at probability
calculus?

But let’s build intuition, and expose differences!

• Contrast this with stochasticity due to assessments of µ(x∗; θ) or
p(y∗|x∗, θ) for θ ∼ Θ|D, α

Bayes: what and why?

Bayesian Reasoning

Reasoning with parametric BNNs involves averaging over parameters

in a Bayesian sense a model is a set of assumptions
e.g. conditional independences, choice of prior, choice of likelihood,
architecture blocks, hyperparameters

formally we should write p(D, θ|α,M) where M is the model
assumptions — we omit M for brevity

θ is only one hypothesis under this model

the “worth” of each θ is quantified by p(θ|D, α)

uncertainty estimates are based on this posterior probability

Probabll BNNs 13 / 80

Probabilistic inference

• marginalisation

• conditioning on observations

is the key to Bayes.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Bayesian Inference

Posterior inference

x y θ

α

|D|

p(θ|D) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(D|θ)

p(D)︸ ︷︷ ︸
evidence

p(D|θ) =
∏

〈x,y〉∈D

p(y |x , θ)

p(D) =

∫
p(θ)p(D|θ)dθ

Posterior predictive distribution

x y θ

α

y∗x∗

|D|

p(y∗|x∗,D) =

∫
p(y∗, θ|D, x∗)dθ

=

∫
p(θ|D)p(y∗|x∗, θ)dθ

Conditional independence
Y∗ ⊥ D | θ

Probabll BNNs 14 / 80

• The graphical model tells us that observations are independent of
one another given θ. The dashed arrows illustrate posterior
inference, they show that if we were to condition on observations,
the posterior distribution would depend on all data points.

• This is also clear from the fact that the evidence enters the
computation of a posterior probability.

• Whereas likelihood is straightforward to assess.

• The evidence takes integrating over the entire sample space of Θ.

• Let’s see what happens when we have a novel input x∗, whose
response y∗ we don’t know.

• The marginal probability for any value y∗ in the response space Y
takes marginalising θ out.

• Our graphical model shows clearly that given θ the likelihood
p(y∗|x∗, θ) is independent of the data D. This reveals the posterior
predictive probability: the expected value of the likelihood under the
posterior, i.e., EΘ|D[p(y∗|x∗,Θ)]. This is also known as Bayesian
averaging.

Bayes: what and why?

Terminology

Prior p(θ)

Likelihood p(D|θ)

Posterior p(θ|D)

Evidence (aka Marginal Likelihood) p(D)

Posterior predictive distribution p(y∗|x∗,D)

Probabilistic inference marginalisation/expectation/
conditioning on observations

Probabll BNNs 15 / 80

Remark: in DL the word inference is used differently, it usually has to do
with assessing a decision rule.

Bayes: what and why?

Summary

BNNs are NNs with priors over parameters

The goal is to take uncertainty seriously

Uncertainty estimates help make decisions, e.g.

model comparison and selection

when a human should intervene

Other uses include

reinforcement learning

active learning

meta-learning

learn from streaming data

Bayesian reasoning requires probabilistic inference

Probabll BNNs 16 / 80

Bayes: what and why?

Literature

BDA3 Gelman et al. (2013)

Chapter 1 for an overview of Bayesian theory and useful terminology

All of Part I for an introductory course

Chapter 4 for connections to non-Bayesian approaches

Probabll BNNs 17 / 80

BDA3 is now available for free: http://www.stat.columbia.edu/

~gelman/book/

http://www.stat.columbia.edu/~gelman/book/
http://www.stat.columbia.edu/~gelman/book/

Outline

1 Bayes: what and why?

2 Choosing a prior

3 Posterior Inference for BNNs

4 Bayesian Dropout

5 Example

Choosing a prior

How does one choose a prior?

A prior is meant to capture our beliefs about the phenomenon we are
modelling – in this case the relationship between x and y

Let’s first consider a simple example: mixture model

Z |π ∼ Cat(π)

X |θ, z ∼ Cat(θ(z))

We first select a discrete mixture component z , this component then selects a

Categorical distribution from which we generate a data point x

MLE

π = 1/K1K

θ = 〈θ(1), . . . , θ(K)〉

Bayes

π|α ∼ Dir(α1K)

θ(k)|β ∼ Dir(β1V)

Probabll BNNs 18 / 80

1K is a K -dimensional vector where every element is 1.

In MLE parameters are given. Where do they come from? Usually some-
thing like arg maxθ log p(D|θ).

For Bayes parameters are rvs (there’s no search for parameters, they come
from the prior, stochastically). Let me emphasise this: there is no search.
Learning is not the task of finding the model parameters that suits a cri-
terion. That is what learning comes down to in terms of MLE, but that’s
not what learning needs to be generally. In Bayesian inference, we start
from some general ideas about θ, coded in Θ|α, and updated our beliefs by
inferring Θ|D, α. Using the Bayesian model to make decisions dispenses
with ever singling out any ‘optimum’ θ.

It is important to ask: what does it mean

• to impose a Dirichlet prior on mixing coefficients π?

• to impose a Dirichlet prior on the parameters of each likelihood
component θ(z)?

Choosing a prior

What makes good mixing coefficients?

Say we have K = 4 components, I show a few samples for
π ∼ Dir(10× 1K)

π ∼ Dir(1× 1K)

π ∼ Dir(0.1× 1K)

Probabll BNNs 19 / 80

The question you have to think about is: Can we make any assumptions
before observing data?

For example, let’s see what happens as we vary our choice of prior for
mixing coefficients

• Here you see 4 models that are likely under this prior. Each of these
models gives every component of the mixture roughly the same
opportunity to generate data points.

• This prior is different, each model prefers few components. Clearly,
there’s no reason to prefer component 1 systematically over the
others, so this prior supports coefficients that reveal different
winners each time.

• This prior likes very sparse mixing coefficients. Again, there’s no
reason to prefer any one component over any other. But it seems
like a good idea to prefer sparse mixtures. The Dirichlet prior allows
us to express a preference: every model is possible (literally, every
way to mix for components), but some models are preferred (for
example, the sparse ones).

Choosing a prior

What makes good mixing coefficients?

Say we have K = 4 components, I show a few samples for
π ∼ Dir(10× 1K)

π ∼ Dir(1× 1K)

π ∼ Dir(0.1× 1K)

Probabll BNNs 19 / 80

The question you have to think about is: Can we make any assumptions
before observing data?

For example, let’s see what happens as we vary our choice of prior for
mixing coefficients

• Here you see 4 models that are likely under this prior. Each of these
models gives every component of the mixture roughly the same
opportunity to generate data points.

• This prior is different, each model prefers few components. Clearly,
there’s no reason to prefer component 1 systematically over the
others, so this prior supports coefficients that reveal different
winners each time.

• This prior likes very sparse mixing coefficients. Again, there’s no
reason to prefer any one component over any other. But it seems
like a good idea to prefer sparse mixtures. The Dirichlet prior allows
us to express a preference: every model is possible (literally, every
way to mix for components), but some models are preferred (for
example, the sparse ones).

Choosing a prior

What makes good mixing coefficients?

Say we have K = 4 components, I show a few samples for
π ∼ Dir(10× 1K)

π ∼ Dir(1× 1K)

π ∼ Dir(0.1× 1K)

Probabll BNNs 19 / 80

The question you have to think about is: Can we make any assumptions
before observing data?

For example, let’s see what happens as we vary our choice of prior for
mixing coefficients

• Here you see 4 models that are likely under this prior. Each of these
models gives every component of the mixture roughly the same
opportunity to generate data points.

• This prior is different, each model prefers few components. Clearly,
there’s no reason to prefer component 1 systematically over the
others, so this prior supports coefficients that reveal different
winners each time.

• This prior likes very sparse mixing coefficients. Again, there’s no
reason to prefer any one component over any other. But it seems
like a good idea to prefer sparse mixtures. The Dirichlet prior allows
us to express a preference: every model is possible (literally, every
way to mix for components), but some models are preferred (for
example, the sparse ones).

Choosing a prior

What makes good mixing coefficients?

Say we have K = 4 components, I show a few samples for
π ∼ Dir(10× 1K)

π ∼ Dir(1× 1K)

π ∼ Dir(0.1× 1K)

Probabll BNNs 19 / 80

The question you have to think about is: Can we make any assumptions
before observing data?

For example, let’s see what happens as we vary our choice of prior for
mixing coefficients

• Here you see 4 models that are likely under this prior. Each of these
models gives every component of the mixture roughly the same
opportunity to generate data points.

• This prior is different, each model prefers few components. Clearly,
there’s no reason to prefer component 1 systematically over the
others, so this prior supports coefficients that reveal different
winners each time.

• This prior likes very sparse mixing coefficients. Again, there’s no
reason to prefer any one component over any other. But it seems
like a good idea to prefer sparse mixtures. The Dirichlet prior allows
us to express a preference: every model is possible (literally, every
way to mix for components), but some models are preferred (for
example, the sparse ones).

Choosing a prior

What makes a good conditional?

Say we have V = 10 types of data points, I show samples θ(k)|β ∼ Dir(β)

Probabll BNNs 20 / 80

How about the components themselves? Similar story.

Do we want components that each can generate everything? That is, no
specialisation whatsoever.

Or do we prefer components that generate only a selected subset of the
support?

Clearly, why should component 1 prefer any particular subset of the sup-
port? It should not, thus it’s prior does not express a preference for one
particular subset, it express a preference for any distribution that focuses
on only a small subset. Distributions that meet this ‘requirement’ are not
preferred over one another.

The idea of allowing components to change like that may be scary. But
think of it this way, we are not committing to any one such distribution.
We are averaging all of them out to get to quantities such as the evidence
and the posterior predictive distribution. There’s no risk in that. The
risk is precisely in arbitrarily picking any one configuration when so many
alternatives exist.

Choosing a prior

Mixture Models are Simple to Understand

The unobservable random variables π and θ(k) are rather interpretable

it’s clear that we want assignments to be unambiguous
sparse mixing weights

it’s clear that we want components to be rather selective
sparse conditionals

it’s clear that we don’t know the identity of clusters
uniform marginals

All of that is essentially very clear a priori

that is, before we collect observations

by simply considering the nature of problem

Meaning of weights in NNs are quite obscure! Who can tell what aspect of
a classifier any of the LSTM parameters controls?

Probabll BNNs 21 / 80

Yes, there’s an elephant in the room.

Choosing a prior

Mixture Models are Simple to Understand

The unobservable random variables π and θ(k) are rather interpretable

it’s clear that we want assignments to be unambiguous
sparse mixing weights

it’s clear that we want components to be rather selective
sparse conditionals

it’s clear that we don’t know the identity of clusters
uniform marginals

All of that is essentially very clear a priori

that is, before we collect observations

by simply considering the nature of problem

Meaning of weights in NNs are quite obscure! Who can tell what aspect of
a classifier any of the LSTM parameters controls?

Probabll BNNs 21 / 80

Yes, there’s an elephant in the room.

Choosing a prior

Learning Functions

We are essentially using NNs to learn some unknown function that maps
from data to probabilities — which then support decisions

It’s only natural to ask, What functions can NNs learn?

usually one says “any continuous and deterministic function”
(Funahashi, 1989), given a wide enough hidden layer

Fair, but how about this,

What functions can we actually recover given finite observations?

How about the fact that we employ convex optimisers?

It’s hard to talk about what functions we can learn when the most
important factors are amount of data and the success of a local optimiser

Probabll BNNs 22 / 80

Choosing a prior

Learning Functions

We are essentially using NNs to learn some unknown function that maps
from data to probabilities — which then support decisions

It’s only natural to ask, What functions can NNs learn?

usually one says “any continuous and deterministic function”
(Funahashi, 1989), given a wide enough hidden layer

Fair, but how about this,

What functions can we actually recover given finite observations?

How about the fact that we employ convex optimisers?

It’s hard to talk about what functions we can learn when the most
important factors are amount of data and the success of a local optimiser

Probabll BNNs 22 / 80

Choosing a prior

Learning Functions

We are essentially using NNs to learn some unknown function that maps
from data to probabilities — which then support decisions

It’s only natural to ask, What functions can NNs learn?

usually one says “any continuous and deterministic function”
(Funahashi, 1989), given a wide enough hidden layer

Fair, but how about this,

What functions can we actually recover given finite observations?

How about the fact that we employ convex optimisers?

It’s hard to talk about what functions we can learn when the most
important factors are amount of data and the success of a local optimiser

Probabll BNNs 22 / 80

Choosing a prior

Random functions

Let’s consider what happens when our parameters are random following a
given prior.

Sampling from these priors and performing forward passes with the
network will expose a range of functions

some might have specific properties
e.g. smoothness, periodicity

some will be preferred over others

some may be impossible
e.g. Brownian functions vs infinitely smooth functions

Probabll BNNs 23 / 80

NN architectures carefully incorporate a number of inductive biases (think
about it: how does the LSTM overcome limitations of vanilla RNNs? how
does the Transformer get rid of the bottleneck of recurrent architectures?
how does a CNN achieve spatial invariance?).

A prior over any NN parameters, even a vague prior, induces a highly
structured prior over functions.

Try this yourself: pick an NN block you like and plot f (x ; θ) for x ∈ R
for different samples θ from a prior. How about this, get a simple prior
that essentially only expresses a preference for numbers of small magnitude
(e.g., U(−σ,+σ) or N (0, σ2)).

Choosing a prior

Draws

Example from MacKay (1998)
Probabll BNNs 24 / 80

MacKay (1998) tries the experiment we just sketched, I highly recommend
you check his examples.

In this example, he shows that he can express preferences over how smooth
a function is.

Choosing a prior

Role of Priors

Priors encode assumptions we can make prior to observing data.

But more than that, priors are a pre-requisite for probabilistic inference:
we need a joint distribution to be able to marginalise parameters and/or
condition on observations.

As BNNs are distributions over functions, it’s often difficult to make
assumptions about their parameters, we should instead focus on the
distribution over functions they induce.

To gain some intuition, let us look into a known prior over functions.

Probabll BNNs 25 / 80

Where we don’t know much a priori, non-informative and weakly informa-
tive priors can be designed (Gelman et al., 2013, Section 2.8).

Though see the difference: a vague prior over parameters need not specify
a vague prior over functions, because the mapping from θ to f (x ; θ) is
hand-crafted and carefully designed (a worthy NN architecture is not an
arbitrary stack of differentiable transformations).

Choosing a prior

Gaussian Processes Prior

Consider the case of regression, where y = f (x) + ε for some
ε ∼ N (0, τ−1)

this implies Y |f (x) ∼ N (f (x), τ−1)

let’s design a prior for f (x)
Note that a parametric way to do so is to say f (x) = w>φ(x) for
some fixed feature function φ(x) and impose a prior on w , but then
again, what are the properties of such a prior?

The probability distribution of a function f (x) is a Gaussian process (GP)
if for any finite selection of points x (1), . . . , x (N) the density
p(f (x (1)), . . . , f (x (N))) is a Gaussian.

A function represents an infinite object, but in ML we typically only reason
over finite datasets!

Probabll BNNs 26 / 80

It’s not crucial, for this course, that you understand a Gaussian processes,
but it does help motivate BNNs.

The GP is a prior over functions (these functions can be real-valued or
vector-valued).

We have a GP if for a finite number of evaluations of the function, that is,
f = {f (x (1)), . . . , f (x (N))} for inputs x = {x (1), . . . , x (N)}, the joint distri-
bution F|x is a multivariate Gaussian. See that the function evaluations
are themselves rvs (and I’ve gathered a collection of inputs and a collection
of function evaluations in boldfaced variables, for brevity).

Recall that to specify such a multivariate Gaussian we need to specify
an N-dimensional mean vector, and a N × N covariance matrix (not an
arbitrary matrix though, do you remember the constraints that apply?).

Choosing a prior

GP Regression

I’ll employ boldfacing to denote a collection of N datapoints, e.g.
x = {x (1), . . . , x (N)} and y = {y (1), . . . , y (N)}, indexing returns an

element, e.g. xi
def
= x (i). Similarly, f = {f (x (1)), . . . , f (x (N))} is a

collection of latent function assessments.

F|x ∼ N (0, k(x, x))

Y|f∼ N (f, τ−1IN)

k(x, x) f y τ

N

The covariance matrix is defined by a kernel function k(x , x ′)

I abuse notation and use k(x, x) to denote the N × N matrix K of
kernel assessments, i.e. Ki ,j = k(xi , xj)

k(x ′, x) denotes a row-vector of kernel assessments

Check the excellent Kernel Cookbook by David Duvenaud
Probabll BNNs 27 / 80

We assume the GP prior has 0 mean and we specify an N ×N covariance
matrix by comparing xi to xj using a kernel function, which I denote by
k(x , x ′).

The graphical model shows clearly that we assume the function to be a
latent variable.

The GP is our choice of prior over functions, as usual, specifying a prob-
abilistic model still requires a choice of likelihood. Let’s concentrate on a
regression problem and pick a Gaussian likelihood.

Our choices are: the kernel function, and the likelihood (which will depend
on the type of data we model).

Avoid confusions: a GP has nothing to do with your function looking
Gaussian, we are talking about N evaluations of your function (which is
allowed to take many many many forms) being random outcomes that are
jointly distributed by a multivariate Gaussian.

https://www.cs.toronto.edu/~duvenaud/cookbook/
https://www.cs.toronto.edu/~duvenaud/

Choosing a prior

Conjugate Inference for GP regression

What’s the family of the marginal of a GP model for some given x, y?

p(y|x) =

∫
p(y, f|x)df =

∫
N (f|0, k(x, x))N (y|f, τ−1IN)︸ ︷︷ ︸

jointly Gaussian

df

Recall: marginals of a multivariate Gaussian are Gaussians!

Thus what’s the family of the posterior?

p(f|x, y) =
p(y, f|x)

p(y|x)

Recall: conditioning on a subset of jointly Gaussian variables yields a
multivariate Gaussian

Probabll BNNs 28 / 80

Check Bishop (2006, Chapter 2) for operations with Multivariate Gaus-
sians.

Choosing a prior

Conjugate Inference for GP regression

What’s the family of the marginal of a GP model for some given x, y?

p(y|x) =

∫
p(y, f|x)df =

∫
N (f|0, k(x, x))N (y|f, τ−1IN)︸ ︷︷ ︸

jointly Gaussian

df

Recall: marginals of a multivariate Gaussian are Gaussians!

Thus what’s the family of the posterior?

p(f|x, y) =
p(y, f|x)

p(y|x)

Recall: conditioning on a subset of jointly Gaussian variables yields a
multivariate Gaussian

Probabll BNNs 28 / 80

Check Bishop (2006, Chapter 2) for operations with Multivariate Gaus-
sians.

Choosing a prior

Conjugate Inference for GP regression

What’s the family of the marginal of a GP model for some given x, y?

p(y|x) =

∫
p(y, f|x)df =

∫
N (f|0, k(x, x))N (y|f, τ−1IN)︸ ︷︷ ︸

jointly Gaussian

df

Recall: marginals of a multivariate Gaussian are Gaussians!

Thus what’s the family of the posterior?

p(f|x, y) =
p(y, f|x)

p(y|x)

Recall: conditioning on a subset of jointly Gaussian variables yields a
multivariate Gaussian

Probabll BNNs 28 / 80

Check Bishop (2006, Chapter 2) for operations with Multivariate Gaus-
sians.

Choosing a prior

Conjugate Inference for GP regression

What’s the family of the marginal of a GP model for some given x, y?

p(y|x) =

∫
p(y, f|x)df =

∫
N (f|0, k(x, x))N (y|f, τ−1IN)︸ ︷︷ ︸

jointly Gaussian

df

Recall: marginals of a multivariate Gaussian are Gaussians!

Thus what’s the family of the posterior?

p(f|x, y) =
p(y, f|x)

p(y|x)

Recall: conditioning on a subset of jointly Gaussian variables yields a
multivariate Gaussian

Probabll BNNs 28 / 80

Check Bishop (2006, Chapter 2) for operations with Multivariate Gaus-
sians.

Choosing a prior

Exact Inference with GPs

Posterior
F|x, y ∼ N (mpost,Kpost)

mpost = K(K + τ−1IN)−1y

Kpost = K−K(K + τ−1IN)−1K>

Posterior predictive distribution:

Y∗|x∗, x, y ∼ N (k(x∗, x)(K + τ−1IN)−1y,

k(x∗, x∗) + τ−1 − k(x∗, x)(K + τ−1IN)−1k(x∗, x)>)

Probabll BNNs 29 / 80

The key here is not that you memorise these expressions, the point is that
this involves no more than kernel assessments (to evaluate K and k(x∗, x))
and a bit of linear algebra.

This result is truly remarkable. We can reason about a novel input x∗
using all latent functions that are likely given our observations, and these
functions can be very flexible (with general properties controlled by our
choice of kernel function), and all we need to do is a bit of linear algebra.
Not particularly scalable (in N) linear algebra, but still, we are talking
about all infinitely many functions in the support of our GP prior.

Do you see that there is no search (optimisation)?

Choosing a prior

Uncertainty illustrated (revisited)

Y

X

Let’s get back to this

Probabll BNNs 30 / 80

Choosing a prior

Uncertainty illustrated (revisited)

Y

X

What if uncertainty depended on the distance to observations?

Probabll BNNs 30 / 80

Choosing a prior

Uncertainty illustrated (revisited)

Y

X

Kernels in GPs operationalise this notion

Probabll BNNs 30 / 80

Choosing a prior

Terminology

Random functions: latent treatment to f (x)

Kernel: k : X × X → R such that k(x , x ′) is the covariance between f (x)
and f (x ′)

Gaussian process prior: F|x ∼ GP(0, k(x, x))

Conjugate GP inference: with Gaussian likelihood, marginals and
conditionals are Gaussians

Probabll BNNs 31 / 80

Choosing a prior

Summary

NNs specify functions.

BNNs learn a distribution over such functions by treating parameters as
random variables.

The effect of a parameter over the learned function is not obvious, and NN
functions encode rich inductive biases.

A vague prior over NN parameters still induces a structured distribution
over functions.

A prior over functions can be specified in a non-parametric way via
specification of a covariance (kernel) function.

A GP prior is a well-studied structured prior over functions

Probabll BNNs 32 / 80

Choosing a prior

Literature

David MacKay’s pioneering work
Bayesian interpolation MacKay (1992a)
or go all the way through his PhD thesis MacKay (1992b)

Priors for Infinite Networks Neal (1994, 1996)

Multivariate Gaussians Bishop (2006, Chapter 2)

Introduction to GPs MacKay (1998)

GP summer school classes by Neil Laurence

Kernel Cookbook by David Duvenaud

Neal (1994): https://www.cs.toronto.edu/~radford/ftp/pin.pdf
Probabll BNNs 33 / 80

http://inverseprobability.com/talks/notes/gpss-session-1.html
http://inverseprobability.com
https://www.cs.toronto.edu/~duvenaud/cookbook/
https://www.cs.toronto.edu/~duvenaud/
https://www.cs.toronto.edu/~radford/ftp/pin.pdf

Outline

1 Bayes: what and why?

2 Choosing a prior

3 Posterior Inference for BNNs

4 Bayesian Dropout

5 Example

Posterior Inference for BNNs

GPs vs BNNs

GP

k(x, x) f y τ

N

BNN

x y θ α
NN(θ)

N

GP’s a non-parametric models

the complexity (or capacity) of the model grows with the data

posterior predictive is known and tractable

we know a lot about the random functions we get

BNNs are parametric models

the complexity (or capacity) is pre-specified

posterior predictive is unknown and intractable

we know little about the random functions we get

Probabll BNNs 34 / 80

See that the GP prior depends on all covariates.

The BNN prior is specified directly over NN parameters.

A BNN can be thought of as a parametric approximation to a GP, where
instead of a fixed kernel we have a parametrised kernel and a distribution
over the parameters of the kernel. More on this in the next few slides.

Posterior Inference for BNNs

Why don’t we always use GPs then?

Flexibility

kernels for text are fewer, less convenient, and less well-understood

x can be very high-dimensional (and perhaps we have less intuitions
to choose a kernel)

conjugate inference is only possible with Gaussian likelihood

Computational complexity

exact GP inference takes O(N3)

it’s possible to scale them up, but that’s an active research topic

many solutions are specific to continuous inputs

Probabll BNNs 35 / 80

Posterior Inference for BNNs

Let’s then consider Bayesian inference for a BNN

This is essentially what we have to address

x y θ

α

y∗x∗

|D|

That is,

p(y∗|D, α, x∗) =

∫
p(y∗, θ|D, α)dθ =

∫
p(θ|D, α)p(y∗|θ, x∗)dθ

But p(θ|D, α) =
∫
p(θ|α)p(D|θ)dθ is intractable

Probabll BNNs 36 / 80

Forget GPs for a moment, let’s talk about BNNs. Bayesian inference is
not about a particular model, after all.

So, let’s just look for the posterior predictive distribution of a BNN!

Clearly, cannot be tractable! But wait, do we know a blackbox algorithm
to address intractable inferences?

Posterior Inference for BNNs

Let’s then consider Bayesian inference for a BNN

This is essentially what we have to address

x y θ

α

y∗x∗

|D|

That is,

p(y∗|D, α, x∗) =

∫
p(y∗, θ|D, α)dθ =

∫
p(θ|D, α)p(y∗|θ, x∗)dθ

But p(θ|D, α) =
∫
p(θ|α)p(D|θ)dθ is intractable

Probabll BNNs 36 / 80

Forget GPs for a moment, let’s talk about BNNs. Bayesian inference is
not about a particular model, after all.

So, let’s just look for the posterior predictive distribution of a BNN!

Clearly, cannot be tractable! But wait, do we know a blackbox algorithm
to address intractable inferences?

Posterior Inference for BNNs

Variational Bayes

Let’s learn a proxy q(θ|λ) to p(θ|D) and solve

p(y∗, θ|D, x∗) =

∫
p(θ|D)p(y∗|θ, x∗)dθ ≈

∫
q(θ|λ)p(y∗|θ, x∗)dθ

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

An alternative with guarantees is MCMC – as discussed in ML2. Example: MCMC
for a mixture of Gaussians by David Blei.

Probabll BNNs 37 / 80

Variational Bayes is the variational inference you know and love, where
as good Bayesians we only optimise our choice of q(θ), not our choice of
p(D, θ).

Wait a second! Are we going to search/optimise? LoL, yes! But, we
are going to optimise our approximations to intractable inferences, not the
model itself.

https://www.google.com/search?client=safari&rls=en&q=MCMC+for+mixture+of+gaussians+david+blei&ie=UTF-8&oe=UTF-8
https://www.google.com/search?client=safari&rls=en&q=MCMC+for+mixture+of+gaussians+david+blei&ie=UTF-8&oe=UTF-8

Posterior Inference for BNNs

Variational Bayes

Let’s learn a proxy q(θ|λ) to p(θ|D) and solve

p(y∗, θ|D, x∗) =

∫
p(θ|D)p(y∗|θ, x∗)dθ ≈

∫
q(θ|λ)p(y∗|θ, x∗)dθ

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

An alternative with guarantees is MCMC – as discussed in ML2. Example: MCMC
for a mixture of Gaussians by David Blei.

Probabll BNNs 37 / 80

Variational Bayes is the variational inference you know and love, where
as good Bayesians we only optimise our choice of q(θ), not our choice of
p(D, θ).

Wait a second! Are we going to search/optimise? LoL, yes! But, we
are going to optimise our approximations to intractable inferences, not the
model itself.

https://www.google.com/search?client=safari&rls=en&q=MCMC+for+mixture+of+gaussians+david+blei&ie=UTF-8&oe=UTF-8
https://www.google.com/search?client=safari&rls=en&q=MCMC+for+mixture+of+gaussians+david+blei&ie=UTF-8&oe=UTF-8

Posterior Inference for BNNs

Evidence Lowerbound (ELBO)

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)p(D)

p(θ,D)

]
definition of posterior

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ,D)

]
+ log p(D) constant

= arg min
q(θ)

− Eq(θ)

[
log

p(θ,D)

q(θ|λ)

]
property of log

= arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ)) ELBO

All quantities are either tractable or easy to estimate by sampling!

Probabll BNNs 38 / 80

You know this from our first class on latent variable models. I’m repeating
it here for convenience and with the variables that are relevant for this
class.

Note I omit α here and there (due to lack of space), I hope it’s not
confusing.

The important message: picking the best posterior approximation is exactly
equivalent to optimising the ELBO, no approximations there. Note the
difference between this and VAEs. In a VAE, we optimise our choice of
model as well (we search for θ), and even though we would like (in a VAE)
to pick θ that leads to maximum log-likelihood, we can only pick θ that
maximises a lowerbound. In VB, we are not searching for θ, as it is given
random treatment, rather we search for the optimum of the lowerbound
w.r.t. q(θ). That optimum is exactly the optimum of the VI objective
arg minq(θ) KL(q(θ)||p(θ|D)).

Posterior Inference for BNNs

Evidence Lowerbound (ELBO)

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)p(D)

p(θ,D)

]
definition of posterior

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ,D)

]
+ log p(D) constant

= arg min
q(θ)

− Eq(θ)

[
log

p(θ,D)

q(θ|λ)

]
property of log

= arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ)) ELBO

All quantities are either tractable or easy to estimate by sampling!

Probabll BNNs 38 / 80

You know this from our first class on latent variable models. I’m repeating
it here for convenience and with the variables that are relevant for this
class.

Note I omit α here and there (due to lack of space), I hope it’s not
confusing.

The important message: picking the best posterior approximation is exactly
equivalent to optimising the ELBO, no approximations there. Note the
difference between this and VAEs. In a VAE, we optimise our choice of
model as well (we search for θ), and even though we would like (in a VAE)
to pick θ that leads to maximum log-likelihood, we can only pick θ that
maximises a lowerbound. In VB, we are not searching for θ, as it is given
random treatment, rather we search for the optimum of the lowerbound
w.r.t. q(θ). That optimum is exactly the optimum of the VI objective
arg minq(θ) KL(q(θ)||p(θ|D)).

Posterior Inference for BNNs

Evidence Lowerbound (ELBO)

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)p(D)

p(θ,D)

]
definition of posterior

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ,D)

]
+ log p(D) constant

= arg min
q(θ)

− Eq(θ)

[
log

p(θ,D)

q(θ|λ)

]
property of log

= arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ)) ELBO

All quantities are either tractable or easy to estimate by sampling!

Probabll BNNs 38 / 80

You know this from our first class on latent variable models. I’m repeating
it here for convenience and with the variables that are relevant for this
class.

Note I omit α here and there (due to lack of space), I hope it’s not
confusing.

The important message: picking the best posterior approximation is exactly
equivalent to optimising the ELBO, no approximations there. Note the
difference between this and VAEs. In a VAE, we optimise our choice of
model as well (we search for θ), and even though we would like (in a VAE)
to pick θ that leads to maximum log-likelihood, we can only pick θ that
maximises a lowerbound. In VB, we are not searching for θ, as it is given
random treatment, rather we search for the optimum of the lowerbound
w.r.t. q(θ). That optimum is exactly the optimum of the VI objective
arg minq(θ) KL(q(θ)||p(θ|D)).

Posterior Inference for BNNs

Evidence Lowerbound (ELBO)

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)p(D)

p(θ,D)

]
definition of posterior

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ,D)

]
+ log p(D) constant

= arg min
q(θ)

− Eq(θ)

[
log

p(θ,D)

q(θ|λ)

]
property of log

= arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ)) ELBO

All quantities are either tractable or easy to estimate by sampling!

Probabll BNNs 38 / 80

You know this from our first class on latent variable models. I’m repeating
it here for convenience and with the variables that are relevant for this
class.

Note I omit α here and there (due to lack of space), I hope it’s not
confusing.

The important message: picking the best posterior approximation is exactly
equivalent to optimising the ELBO, no approximations there. Note the
difference between this and VAEs. In a VAE, we optimise our choice of
model as well (we search for θ), and even though we would like (in a VAE)
to pick θ that leads to maximum log-likelihood, we can only pick θ that
maximises a lowerbound. In VB, we are not searching for θ, as it is given
random treatment, rather we search for the optimum of the lowerbound
w.r.t. q(θ). That optimum is exactly the optimum of the VI objective
arg minq(θ) KL(q(θ)||p(θ|D)).

Posterior Inference for BNNs

Evidence Lowerbound (ELBO)

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)p(D)

p(θ,D)

]
definition of posterior

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ,D)

]
+ log p(D) constant

= arg min
q(θ)

− Eq(θ)

[
log

p(θ,D)

q(θ|λ)

]
property of log

= arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ)) ELBO

All quantities are either tractable or easy to estimate by sampling!

Probabll BNNs 38 / 80

You know this from our first class on latent variable models. I’m repeating
it here for convenience and with the variables that are relevant for this
class.

Note I omit α here and there (due to lack of space), I hope it’s not
confusing.

The important message: picking the best posterior approximation is exactly
equivalent to optimising the ELBO, no approximations there. Note the
difference between this and VAEs. In a VAE, we optimise our choice of
model as well (we search for θ), and even though we would like (in a VAE)
to pick θ that leads to maximum log-likelihood, we can only pick θ that
maximises a lowerbound. In VB, we are not searching for θ, as it is given
random treatment, rather we search for the optimum of the lowerbound
w.r.t. q(θ). That optimum is exactly the optimum of the VI objective
arg minq(θ) KL(q(θ)||p(θ|D)).

Posterior Inference for BNNs

Evidence Lowerbound (ELBO)

Principle: choose an approximation that minimises KL-divergence

arg min
q(θ)

KL(q(θ)||p(θ|D))

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ|D)

]
definition of KL

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)p(D)

p(θ,D)

]
definition of posterior

= arg min
q(θ)

Eq(θ)

[
log

q(θ|λ)

p(θ,D)

]
+ log p(D) constant

= arg min
q(θ)

− Eq(θ)

[
log

p(θ,D)

q(θ|λ)

]
property of log

= arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ)) ELBO

All quantities are either tractable or easy to estimate by sampling!
Probabll BNNs 38 / 80

You know this from our first class on latent variable models. I’m repeating
it here for convenience and with the variables that are relevant for this
class.

Note I omit α here and there (due to lack of space), I hope it’s not
confusing.

The important message: picking the best posterior approximation is exactly
equivalent to optimising the ELBO, no approximations there. Note the
difference between this and VAEs. In a VAE, we optimise our choice of
model as well (we search for θ), and even though we would like (in a VAE)
to pick θ that leads to maximum log-likelihood, we can only pick θ that
maximises a lowerbound. In VB, we are not searching for θ, as it is given
random treatment, rather we search for the optimum of the lowerbound
w.r.t. q(θ). That optimum is exactly the optimum of the VI objective
arg minq(θ) KL(q(θ)||p(θ|D)).

Posterior Inference for BNNs

ELBO continued

Parametric assumption

arg max
q(θ)

Eq(θ) [log p(θ,D)] + H(q(θ))

= arg max
λ

Eq(θ|λ) [log p(θ,D)] + H(q(θ|λ))

Recall

p(θ,D) = p(θ)
N∏
i=1

p(y (i)|θ, x (i))

And thus the ELBO evaluates to

Eq(θ|λ)

[
log p(θ) +

N∑
i=1

log p(y (i)|θ, x (i))

]
+ H(q(θ|λ))

= Eq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
− KL(q(θ|λ)||p(θ))

Probabll BNNs 39 / 80

Another difference with VAEs as you know. In VB the latent variable (θ)
is global to all observations. The latent variable (z) in a VAE is assigned
locally per data point.

Posterior Inference for BNNs

Mean Field Assumption

Let θ ∈ RD . The simplest approximate posterior is

q(θ|λ) =
D∏

d=1

q(θd |λ)

where we assume independence amongst θd .

If we have the same exponential family for p(θ) and q(θ|λ), then

KL(q(θ|λ)||p(θ)) =
D∑

d=1

KL(q(θd |λ)||p(θd))︸ ︷︷ ︸
closed form

is known in closed form.

We can group parameters and assume independence of groups (e.g. layers).
Probabll BNNs 40 / 80

Again, we design posterior approximations with tractability in mind.

Posterior Inference for BNNs

Mean Field Assumption

Let θ ∈ RD . The simplest approximate posterior is

q(θ|λ) =
D∏

d=1

q(θd |λ)

where we assume independence amongst θd .

If we have the same exponential family for p(θ) and q(θ|λ), then

KL(q(θ|λ)||p(θ)) =
D∑

d=1

KL(q(θd |λ)||p(θd))︸ ︷︷ ︸
closed form

is known in closed form.

We can group parameters and assume independence of groups (e.g. layers).
Probabll BNNs 40 / 80

Again, we design posterior approximations with tractability in mind.

Posterior Inference for BNNs

Mean Field Assumption

Let θ ∈ RD . The simplest approximate posterior is

q(θ|λ) =
D∏

d=1

q(θd |λ)

where we assume independence amongst θd .

If we have the same exponential family for p(θ) and q(θ|λ),

then

KL(q(θ|λ)||p(θ)) =
D∑

d=1

KL(q(θd |λ)||p(θd))︸ ︷︷ ︸
closed form

is known in closed form.

We can group parameters and assume independence of groups (e.g. layers).
Probabll BNNs 40 / 80

Again, we design posterior approximations with tractability in mind.

Posterior Inference for BNNs

Mean Field Assumption

Let θ ∈ RD . The simplest approximate posterior is

q(θ|λ) =
D∏

d=1

q(θd |λ)

where we assume independence amongst θd .

If we have the same exponential family for p(θ) and q(θ|λ), then

KL(q(θ|λ)||p(θ)) =
D∑

d=1

KL(q(θd |λ)||p(θd))︸ ︷︷ ︸
closed form

is known in closed form.

We can group parameters and assume independence of groups (e.g. layers).
Probabll BNNs 40 / 80

Again, we design posterior approximations with tractability in mind.

Posterior Inference for BNNs

Choosing λ

How should we choose λ?

How can we approach the following problem?

arg max
λ

Eq(θ|λ) [log p(D|θ)]− KL(q(θ|λ)||p(θ))︸ ︷︷ ︸
closed form

What’s the workhorse of optimisation in deep learning?

Probabll BNNs 41 / 80

Isn’t it cool to use a lot of DL machinery to help DL go beyond DL?

Posterior Inference for BNNs

Choosing λ

How should we choose λ?

How can we approach the following problem?

arg max
λ

Eq(θ|λ) [log p(D|θ)]− KL(q(θ|λ)||p(θ))︸ ︷︷ ︸
closed form

What’s the workhorse of optimisation in deep learning?

Probabll BNNs 41 / 80

Isn’t it cool to use a lot of DL machinery to help DL go beyond DL?

Posterior Inference for BNNs

Choosing λ

How should we choose λ?

How can we approach the following problem?

arg max
λ

Eq(θ|λ) [log p(D|θ)]− KL(q(θ|λ)||p(θ))︸ ︷︷ ︸
closed form

What’s the workhorse of optimisation in deep learning?

Probabll BNNs 41 / 80

Isn’t it cool to use a lot of DL machinery to help DL go beyond DL?

Posterior Inference for BNNs

Gradient-based optimisation for λ

We take steps in the direction that maximises the ELBO

∇λ ELBO = ∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

By assumption (mean field and exponential families), KL is tractable (we
pack it in a node and autodiff does the job)!

How about the first term? What if N is prohibitively large?

N∑
i=1

log p(y (i)|θ, x (i)) is certainly prohibitive!

Probabll BNNs 42 / 80

Posterior Inference for BNNs

Gradient-based optimisation for λ

We take steps in the direction that maximises the ELBO

∇λ ELBO = ∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

By assumption (mean field and exponential families), KL is tractable (we
pack it in a node and autodiff does the job)!

How about the first term? What if N is prohibitively large?

N∑
i=1

log p(y (i)|θ, x (i)) is certainly prohibitive!

Probabll BNNs 42 / 80

Posterior Inference for BNNs

Gradient-based optimisation for λ

We take steps in the direction that maximises the ELBO

∇λ ELBO = ∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

By assumption (mean field and exponential families), KL is tractable (we
pack it in a node and autodiff does the job)!

How about the first term? What if N is prohibitively large?

N∑
i=1

log p(y (i)|θ, x (i)) is certainly prohibitive!

Probabll BNNs 42 / 80

Posterior Inference for BNNs

Gradient-based optimisation for λ

We take steps in the direction that maximises the ELBO

∇λ ELBO = ∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

By assumption (mean field and exponential families), KL is tractable (we
pack it in a node and autodiff does the job)!

How about the first term? What if N is prohibitively large?

N∑
i=1

log p(y (i)|θ, x (i)) is certainly prohibitive!

Probabll BNNs 42 / 80

Posterior Inference for BNNs

Stochastic gradients are allowed

Noisy, but unbiased, gradients:

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]

= ∇λEq(θ|λ)

[
N

N∑
i=1

1

N
log p(y (i)|θ, x (i))

]
multiply by N/N

= ∇λEq(θ|λ)

[
NEI∼U(1/N)

[
log p(y (I)|θ, x (I))

]]
= N∇λEI∼U(1/N)

[
Eq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
swap expectations

= NEI∼U(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
linearity

MC
≈ N

M

M∑
i=1

∇λEq(θ|λ)

[
log p(y (i)|θ, x (i))

]
I ∼ U(1/N)

Sample a batch, solve expected value under q, then take gradient.

Probabll BNNs 43 / 80

Data sub-sampling! You know this, but I want to repeat the argument this
time for BNNs. Spoiler alert: we will justify mini-batching here.

Posterior Inference for BNNs

Stochastic gradients are allowed

Noisy, but unbiased, gradients:

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]

= ∇λEq(θ|λ)

[
N

N∑
i=1

1

N
log p(y (i)|θ, x (i))

]
multiply by N/N

= ∇λEq(θ|λ)

[
NEI∼U(1/N)

[
log p(y (I)|θ, x (I))

]]
= N∇λEI∼U(1/N)

[
Eq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
swap expectations

= NEI∼U(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
linearity

MC
≈ N

M

M∑
i=1

∇λEq(θ|λ)

[
log p(y (i)|θ, x (i))

]
I ∼ U(1/N)

Sample a batch, solve expected value under q, then take gradient.

Probabll BNNs 43 / 80

Data sub-sampling! You know this, but I want to repeat the argument this
time for BNNs. Spoiler alert: we will justify mini-batching here.

Posterior Inference for BNNs

Stochastic gradients are allowed

Noisy, but unbiased, gradients:

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]

= ∇λEq(θ|λ)

[
N

N∑
i=1

1

N
log p(y (i)|θ, x (i))

]
multiply by N/N

= ∇λEq(θ|λ)

[
NEI∼U(1/N)

[
log p(y (I)|θ, x (I))

]]

= N∇λEI∼U(1/N)

[
Eq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
swap expectations

= NEI∼U(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
linearity

MC
≈ N

M

M∑
i=1

∇λEq(θ|λ)

[
log p(y (i)|θ, x (i))

]
I ∼ U(1/N)

Sample a batch, solve expected value under q, then take gradient.

Probabll BNNs 43 / 80

Data sub-sampling! You know this, but I want to repeat the argument this
time for BNNs. Spoiler alert: we will justify mini-batching here.

Posterior Inference for BNNs

Stochastic gradients are allowed

Noisy, but unbiased, gradients:

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]

= ∇λEq(θ|λ)

[
N

N∑
i=1

1

N
log p(y (i)|θ, x (i))

]
multiply by N/N

= ∇λEq(θ|λ)

[
NEI∼U(1/N)

[
log p(y (I)|θ, x (I))

]]
= N∇λEI∼U(1/N)

[
Eq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
swap expectations

= NEI∼U(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
linearity

MC
≈ N

M

M∑
i=1

∇λEq(θ|λ)

[
log p(y (i)|θ, x (i))

]
I ∼ U(1/N)

Sample a batch, solve expected value under q, then take gradient.

Probabll BNNs 43 / 80

Data sub-sampling! You know this, but I want to repeat the argument this
time for BNNs. Spoiler alert: we will justify mini-batching here.

Posterior Inference for BNNs

Stochastic gradients are allowed

Noisy, but unbiased, gradients:

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]

= ∇λEq(θ|λ)

[
N

N∑
i=1

1

N
log p(y (i)|θ, x (i))

]
multiply by N/N

= ∇λEq(θ|λ)

[
NEI∼U(1/N)

[
log p(y (I)|θ, x (I))

]]
= N∇λEI∼U(1/N)

[
Eq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
swap expectations

= NEI∼U(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
linearity

MC
≈ N

M

M∑
i=1

∇λEq(θ|λ)

[
log p(y (i)|θ, x (i))

]
I ∼ U(1/N)

Sample a batch, solve expected value under q, then take gradient.

Probabll BNNs 43 / 80

Data sub-sampling! You know this, but I want to repeat the argument this
time for BNNs. Spoiler alert: we will justify mini-batching here.

Posterior Inference for BNNs

Stochastic gradients are allowed

Noisy, but unbiased, gradients:

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]

= ∇λEq(θ|λ)

[
N

N∑
i=1

1

N
log p(y (i)|θ, x (i))

]
multiply by N/N

= ∇λEq(θ|λ)

[
NEI∼U(1/N)

[
log p(y (I)|θ, x (I))

]]
= N∇λEI∼U(1/N)

[
Eq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
swap expectations

= NEI∼U(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
linearity

MC
≈ N

M

M∑
i=1

∇λEq(θ|λ)

[
log p(y (i)|θ, x (i))

]
I ∼ U(1/N)

Sample a batch, solve expected value under q, then take gradient.
Probabll BNNs 43 / 80

Data sub-sampling! You know this, but I want to repeat the argument this
time for BNNs. Spoiler alert: we will justify mini-batching here.

Posterior Inference for BNNs

Challenge

∇λ ELBO =

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

= NEU(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

we can compute KL and thus differentiate it

mini-batching is allowed, so we can compute the first term for a few
datapoints at a time

but can we really solve Eq(θ|λ)

[
log p(y (i)|θ, x (i))

]
for even a single

instance?

Probabll BNNs 44 / 80

It gets better every time, but we still have to differentiate an intractable
expected value. If we only knew a technique for stochastic backpropagation
:-)

Posterior Inference for BNNs

Challenge

∇λ ELBO =

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

= NEU(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

we can compute KL and thus differentiate it

mini-batching is allowed, so we can compute the first term for a few
datapoints at a time

but can we really solve Eq(θ|λ)

[
log p(y (i)|θ, x (i))

]
for even a single

instance?

Probabll BNNs 44 / 80

It gets better every time, but we still have to differentiate an intractable
expected value. If we only knew a technique for stochastic backpropagation
:-)

Posterior Inference for BNNs

Challenge

∇λ ELBO =

∇λEq(θ|λ)

[
N∑
i=1

log p(y (i)|θ, x (i))

]
−∇λ KL(q(θ|λ)||p(θ))

= NEU(1/N)

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

we can compute KL and thus differentiate it

mini-batching is allowed, so we can compute the first term for a few
datapoints at a time

but can we really solve Eq(θ|λ)

[
log p(y (i)|θ, x (i))

]
for even a single

instance?

Probabll BNNs 44 / 80

It gets better every time, but we still have to differentiate an intractable
expected value. If we only knew a technique for stochastic backpropagation
:-)

Posterior Inference for BNNs

Reparameterisation

Remember the law of the unconscious statistician?

Eq(θ|λ) [f (θ)] = Eφ(ε)

[
f (θ = T −1(ε, λ))

]
We used it for VAEs, and we are going to use it now for BNNs.

Probabll BNNs 45 / 80

Parameters are almost always continuous, so reparameterised gradients
should not be too difficult here.

Posterior Inference for BNNs

Reparameterised Gradients

Assume we pick q(θ|λ) from a reparameterisable family
e.g. location-scale distributions

∇λ ELBO =

NEI

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
∇λEφ(ε)

[
log p(y (I)|θ = T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
Eφ(ε)

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEφ(ε)

[
EI

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

Probabll BNNs 46 / 80

The trick here is to show that data sub-sampling and reparameterisation
can be swapped around.

And remember, if we don’t know KL exactly, or if there are dependencies
across subsets of θ, we can always use a reparameterised gradient for it,
since KL is an expected value under q(θ|λ).

Posterior Inference for BNNs

Reparameterised Gradients

Assume we pick q(θ|λ) from a reparameterisable family
e.g. location-scale distributions

∇λ ELBO =

NEI

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
∇λEφ(ε)

[
log p(y (I)|θ = T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
Eφ(ε)

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEφ(ε)

[
EI

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

Probabll BNNs 46 / 80

The trick here is to show that data sub-sampling and reparameterisation
can be swapped around.

And remember, if we don’t know KL exactly, or if there are dependencies
across subsets of θ, we can always use a reparameterised gradient for it,
since KL is an expected value under q(θ|λ).

Posterior Inference for BNNs

Reparameterised Gradients

Assume we pick q(θ|λ) from a reparameterisable family
e.g. location-scale distributions

∇λ ELBO =

NEI

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
∇λEφ(ε)

[
log p(y (I)|θ = T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
Eφ(ε)

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEφ(ε)

[
EI

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

Probabll BNNs 46 / 80

The trick here is to show that data sub-sampling and reparameterisation
can be swapped around.

And remember, if we don’t know KL exactly, or if there are dependencies
across subsets of θ, we can always use a reparameterised gradient for it,
since KL is an expected value under q(θ|λ).

Posterior Inference for BNNs

Reparameterised Gradients

Assume we pick q(θ|λ) from a reparameterisable family
e.g. location-scale distributions

∇λ ELBO =

NEI

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
∇λEφ(ε)

[
log p(y (I)|θ = T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
Eφ(ε)

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEφ(ε)

[
EI

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

Probabll BNNs 46 / 80

The trick here is to show that data sub-sampling and reparameterisation
can be swapped around.

And remember, if we don’t know KL exactly, or if there are dependencies
across subsets of θ, we can always use a reparameterised gradient for it,
since KL is an expected value under q(θ|λ).

Posterior Inference for BNNs

Reparameterised Gradients

Assume we pick q(θ|λ) from a reparameterisable family
e.g. location-scale distributions

∇λ ELBO =

NEI

[
∇λEq(θ|λ)

[
log p(y (I)|θ, x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
∇λEφ(ε)

[
log p(y (I)|θ = T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEI

[
Eφ(ε)

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

= NEφ(ε)

[
EI

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

Probabll BNNs 46 / 80

The trick here is to show that data sub-sampling and reparameterisation
can be swapped around.

And remember, if we don’t know KL exactly, or if there are dependencies
across subsets of θ, we can always use a reparameterised gradient for it,
since KL is an expected value under q(θ|λ).

Posterior Inference for BNNs

Reparameterised Gradient Estimate

∇λ ELBO =

NEφ(ε)

[
EI

[
∇λ log p(y (I)|T −1(ε, λ), x (I))

]]
−∇λ KL(q(θ|λ)||p(θ))

MC
≈

 M

NK

K∑
k=1

M∑
i=1

∇λ log p(y (i)| T −1(ε(k), λ)︸ ︷︷ ︸
=θ(k)

, x (i))

−∇λ KL(q(θ|λ)||p(θ))

where ε(k) ∼ φ(ε), θ(k) = T −1(ε(k), λ) ∼ q(θ|λ), and I ∼ U(1/N)

Probabll BNNs 47 / 80

Procedure

• Sample parameters via deterministic reparameterisation

• Sample batch

• Compute likelihood and KL: forward

• Sampling parameters first allows for efficient parallel implementation

Once I told you that scaling the gradient of the log-likelihood term would
matter in the future. Here it is. It matters because data sub-sampling
affects only the log-likelihood part, not the KL part.

Interpret this, we are doing mini-batch training, where each batch uses a
different set of parameters, the parameters are not being optimised, but
they are sampled from an approximation to the model’s true posterior, this
approximation is being optimised. Once again: there are no ∇θ terms,
whatsoever. Do you see that?

Posterior Inference for BNNs

After training?

After training, we don’t have 1 model, we have a distribution q(θ|λ) over
“all possible models”

q(θ|D) approximates the true posterior p(θ|D)

it should prefer models that are likely after observing data D
in light of whatever prior assumptions we made

there are no convergence guarantees and most approximating families
are too simple (underestimate variance)

After training we make inferences using q(θ|λ)

p(y∗|D, x∗) ≈
∫
q(θ|λ)p(y∗|θ, x∗)dθ

which we typically further approximate via sampling

We can also estimate p(D) using q and the importance sampling

fundamental identity, i.e. p(D) =
∫
q(θ|λ)p(θ,D)

q(θ|λ) dθ

Probabll BNNs 48 / 80

Training now gives you a point estimate for λ
so we are not training p(D|θ), we are training q(θ|λ)!

Posterior Inference for BNNs

After training?

After training, we don’t have 1 model, we have a distribution q(θ|λ) over
“all possible models”

q(θ|D) approximates the true posterior p(θ|D)

it should prefer models that are likely after observing data D
in light of whatever prior assumptions we made

there are no convergence guarantees and most approximating families
are too simple (underestimate variance)

After training we make inferences using q(θ|λ)

p(y∗|D, x∗) ≈
∫
q(θ|λ)p(y∗|θ, x∗)dθ

which we typically further approximate via sampling

We can also estimate p(D) using q and the importance sampling

fundamental identity, i.e. p(D) =
∫
q(θ|λ)p(θ,D)

q(θ|λ) dθ

Probabll BNNs 48 / 80

Training now gives you a point estimate for λ
so we are not training p(D|θ), we are training q(θ|λ)!

Posterior Inference for BNNs

After training?

After training, we don’t have 1 model, we have a distribution q(θ|λ) over
“all possible models”

q(θ|D) approximates the true posterior p(θ|D)

it should prefer models that are likely after observing data D
in light of whatever prior assumptions we made

there are no convergence guarantees and most approximating families
are too simple (underestimate variance)

After training we make inferences using q(θ|λ)

p(y∗|D, x∗) ≈
∫
q(θ|λ)p(y∗|θ, x∗)dθ

which we typically further approximate via sampling

We can also estimate p(D) using q and the importance sampling

fundamental identity, i.e. p(D) =
∫
q(θ|λ)p(θ,D)

q(θ|λ) dθ

Probabll BNNs 48 / 80

Training now gives you a point estimate for λ
so we are not training p(D|θ), we are training q(θ|λ)!

Posterior Inference for BNNs

Terminology

Approximate posterior q(θ|λ)

Variational inference arg minq(θ) KL(q(θ)||p(θ|D))

ELBO Eq(θ)[log p(D|θ)]− KL(q(θ)||p(θ))

Mean field assumption q(θ|λ) =
∏D

d=1 q(θd |λd)

Reparameterised gradients
∇λEq(θ|λ) [f (θ)] = Eφ(ε) [∇θf (θ)∇λt(ε, λ)]

Posterior predictive distribution
p(y∗|D, x∗) ≈

∫
q(θ|λ)p(y∗|θ, x∗)dθ

Probabll BNNs 49 / 80

Posterior Inference for BNNs

Summary

VI tuns inference into optimisation and gives you a proxy to p(θ|D)

Estimates of posterior predictive mean and variance

help you decide whether or not to make a decision

in classification: consider plotting precision and recall against predictive
variance
in regression: interval in which you expect a response to be

Estimates of marginal likelihood

help you compare models under different hyperparameters

Caveat: limited understanding about the impact of our priors

Probabll BNNs 50 / 80

Posterior Inference for BNNs

Literature

Variational inference Blei et al. (2017)

Stochastic VI Hoffman et al. (2013)
for nonconjugate inference Titsias and Lázaro-Gredilla (2014)

Bayes by backprop Blundell et al. (2015)
Model comparison MacKay (1992a)

Probabll BNNs 51 / 80

Outline

1 Bayes: what and why?

2 Choosing a prior

3 Posterior Inference for BNNs

4 Bayesian Dropout

5 Example

Bayesian Dropout

Dropout

A very simple technique to make MLE more robust

stochastic training: with probability 1− p, “drop” inputs to a fully
connected layer

possibly use L2 regularisation (because why not?)

deterministic test: disable “dropout” and scale weights by p

Srivastava et al. (2014)
Probabll BNNs 52 / 80

Dropout is a much loved ‘regularisation’ scheme for NNs.

Every NN that is worth anything probably is trained with some dropout.

Bayesian Dropout

Relate dropout to BNNs

BNNs come with a somewhat disappointing fact, that we have no clue
what classes of random functions a given prior leads to.

BNNs however can be seen as an approximation to a GP: there are
connections between the nonlinearities we use and known kernels

Gal and Ghahramani (2016b) show that a VB procedure for a certain BNN
is an approximate inference scheme for an approximation to a GP.
Moreover, with a specific choice of parametric family for q(θ|λ), this VB
procedure is identical to MLE-training with dropout (up to some
additional ‘regularisers’).

The main consequences take place after trainingL we gain access to
estimates of marginal likelihood and posterior predictive distribution.

Probabll BNNs 53 / 80

About priors for BNNs

• To understand more about the role of priors and Bayesian averaging
in BNNs, check Wilson (2020).

About approximate inference for an approximate GP:

• A BNN is a parametric approximation to a GP (MacKay, 1992b;
Neal, 1994; Gal and Ghahramani, 2016b).

• MLE-training with dropout comes very close to a VB algorithm for
BNNs. Thus training with dropout can be thought as approximate
inference for a BNN (and thus for an approximation to a GP).

• The connection to GPs is interesting from a theoretical standpoint,
but might not tell you much.

• The practical implication, however, is that a tractable VB algorithm
allows us to estimate the result of posterior predictive queries for
BNNs.

Bayesian Dropout

Single hidden layer BNN

Consider this simple Bayesian FFNN with a single hidden layer

h = σ(W1x + b)

f (x) = W2h

where

x ∈ RD is an input (predictor), and f (x) ∈ RO is a latent output

W1 ∈ RH×D ,b ∈ RH ,W2 ∈ RO×H

each of the D columns of W1 is distributed by N (0, `−2IH)
b ∼ N (0, `−2

0 IH)
each of the H columns of W2 is distributed by N (0, `−2IO)

σ(·) is an elementwise non-linearity (e.g., sigmoid, softplus, tanh).

Probabll BNNs 54 / 80

This is a FFNN, but it is a Bayesian one, because its parameters are rvs.

The latent output is used to parameterise a likelihood, e.g.
Y |x , τ ∼ N (f (x ; θ), τ−1IO) in regression or
Y |x ∼ Cat(softmax(f (x ; θ))) in classification.

Parametric approximation to GP: it turns out this simple block can be
thought of as a parametric approximation to a GP. As the number of hid-
den units H goes to infinity, we recover the non-parametric GP (MacKay,
1992b; Neal, 1994; Gal and Ghahramani, 2016b).

Bayesian Dropout

VB for Bayesian FFNN

We search for a parametric approximation to the model’s true posterior
distribution that minimises KL (q(θ|λ) || p(θ|D)). For that, we can
optimise the ELBO w.r.t. λ:

arg max
λ

Eq(θ|λ)[log p(D|θ)]− KL (q(θ|λ) || p(θ))

This takes specifying q(θ) where θ = {W1,b,W2}.

Probabll BNNs 55 / 80

In the next few slides, we will derive the VB procedure that recovers
dropout. Before going ahead with that, can you design a VB procedure
that you find convenient? Don’t worry about making it look like dropout
at all, use the knowledge of VB you have gathered so far.

Bayesian Dropout

A mean field approximation that recovers dropout

Independence across parameter groups

q(W1,W2,b|λ) =

(
D∏

c=1

q(w1,c |λ1,c)

)(
H∏

c=1

q(w2,c |λ2,c)

)
q(b|λb)

Diagonal Gaussian for biases

q(b|λ) = N (b|m, σ2IH) nicely reparameterisable!

Mixture of Gaussians for each row of W1 or W2

q(w1,c |λ1) = pN (w1,c |m1,c , σ
2IH) + (1− p)N (w1,c |0, σ2IH)

q(w2,c |λ2) = pN (w2,c |m2,c , σ
2IO) + (1− p)N (w2,c |0, σ2IO)

Probabll BNNs 56 / 80

We are going to make a mean field assumption and pick convenient families
for each factor.

For biases, we get a diagonal Gaussian.

For columns of the linear layers we will mix two Gaussians using p ∈ (0, 1).
For one of the Gaussians we learn a mean vector, for the other we used 0.

In all cases, assume the variances are fixed, as well as p. Thus λ =
{m,M1,M2} where M1 is the H × D matrix obtained by concatenating
the (column) vectors m1,c for c = 1, . . . ,D, and M2 is the O × H matrix
obtained by concatenating the (column) vectors m2,c for c = 1, . . . ,H.

Can we reparameterise samples from the mixture of Gaussians?

Bayesian Dropout

Mixture of Deltas

Let σ → 0

from mixture of Gaussians to mixture of Deltas

Z |p ∼ Bern(p)

w1,c =

{
m1,c + 0� ε if z1,c = 1

(1− z1,c)0� ε if z1,c = 0

= z1,cm1,c

biases are deterministic because σ → 0 the Gaussian tends to
δ(m− b)

The affine transform in fully connected layers becomes

([(z1,cm1,c)]Dc=1)x + m = ([m1,c]Dc=1)(z1 � x) + m

with probability p, we essentially drop inputs
Same happens with W2 (weights of the second layer)

Probabll BNNs 57 / 80

Here Gal and Ghahramani (2016b) make an unusual assumption, namely,
that the variational Gaussians have no variance. This is the kind of thing
you only do when you are really trying to get to a procedure that really
looks like dropout. There is merit in this (it recovers dropout), but there
are problems as well. Can you anticipate some problems?

Notation

• [(z1,cm1,c)]Dc=1 makes an H × D matrix by concatenating (column)
vectors in sequence;

• z1 is a vector of D independent Bernoulli draws

Note how we can mask the columns using the Bernoulli samples, or alter-
natively, mask the inputs. Do you see the advantage of being able to push
the randomness to the input?

Bayesian Dropout

ELBO

We can now use stochastic backpropagation to solve

arg max
λ

N EI

[
EZ

[
log p(y (I)|x (I), θ = T −1(z , λ))

]]
− KL(q(θ|λ)||p(θ))

where

θ = {W1,W2,b} and λ = {M1,M2,m}
Z1,i ∼ Bern(p) and Z2,s ∼ Bern(p)

We can sample with a reparameterisation

draws from Bern(p) are used to mask the inputs to layers

We can assess the likelihood

because we were the ones to choose it

We are only missing a KL term: which in this case can be approximated by
L2 on λ.

Probabll BNNs 58 / 80

The KL term requires approximation because we have an MoG approximate
posterior for W1,W2 and because of the assumption that σ → 0.

If you propose a VB procedure yourself, one that’s not heavily inspired
by dropout, you can choose q(θ|λ) such that the KL term is known in
closed-form.

It’s always worth remarking: we are optimising q(θ|λ), not p(D|θ).

Bayesian Dropout

KL approximation

In regression (recall τ is the prior precision for the likelihood Y |f)

p

2τN
||M1||22 +

p

2τN
||M2||22 +

1

2τN
||m||22 (1)

In classification

p

2N
||M1||22 +

p

2N
||M2||22 +

1

2N
||m||22 (2)

See Gal and Ghahramani (2016b)
Probabll BNNs 59 / 80

Bayesian Dropout

Prior parameters

The prior length-scale is the inverse of the standard deviation of the
distribution over the scaling weights in affine layers, it controls the rate of
change of the sampled functions.

The prior precision (in regression) controls the observation noise, smaller
precision leads to bigger error bars

In classification we let τ−1 → 0.

These are hyperparameters you have to search for. You can also relate
them to the weight decay if your NN library offers weight decay out of the
box.

Probabll BNNs 60 / 80

Bayesian Dropout

Approximate posterior parameters

M1 variational mean for input-to-hidden, m variational mean of bias
vector, M2 variational mean for hidden-to-output

these are the only trainable parameters

In principle, we can have one Bernoulli parameter per layer.

Probabll BNNs 61 / 80

Do you think we could learn the Bernoulli parameter easily?

Bayesian Dropout

Inferences

Marginal likelihood: get estimates via importance sampling to compare
different hyperparameters

Posterior predictive distribution

do not disable dropout at test time

compute empirical estimates of predictive mean and variance from
stochastic outputs

for classification, consider uncertainty over class probabilities, for
example, boxplot samples of the probability p(y |x∗, θ) of each
outcome y for θ ∼ q(θ|λ)

multiple forward passes, but a single trained model

unlike in an ensemble, we are sampling from q(θ|λ), an approximation
to p(θ|D)

Probabll BNNs 62 / 80

Bayesian Dropout

Inferences

Marginal likelihood: get estimates via importance sampling to compare
different hyperparameters

Posterior predictive distribution

do not disable dropout at test time

compute empirical estimates of predictive mean and variance from
stochastic outputs

for classification, consider uncertainty over class probabilities, for
example, boxplot samples of the probability p(y |x∗, θ) of each
outcome y for θ ∼ q(θ|λ)

multiple forward passes, but a single trained model

unlike in an ensemble, we are sampling from q(θ|λ), an approximation
to p(θ|D)

Probabll BNNs 62 / 80

Bayesian Dropout

Inferences

Marginal likelihood: get estimates via importance sampling to compare
different hyperparameters

Posterior predictive distribution

do not disable dropout at test time

compute empirical estimates of predictive mean and variance from
stochastic outputs

for classification, consider uncertainty over class probabilities, for
example, boxplot samples of the probability p(y |x∗, θ) of each
outcome y for θ ∼ q(θ|λ)

multiple forward passes, but a single trained model

unlike in an ensemble, we are sampling from q(θ|λ), an approximation
to p(θ|D)

Probabll BNNs 62 / 80

Bayesian Dropout

Inferences

Marginal likelihood: get estimates via importance sampling to compare
different hyperparameters

Posterior predictive distribution

do not disable dropout at test time

compute empirical estimates of predictive mean and variance from
stochastic outputs

for classification, consider uncertainty over class probabilities, for
example, boxplot samples of the probability p(y |x∗, θ) of each
outcome y for θ ∼ q(θ|λ)

multiple forward passes, but a single trained model

unlike in an ensemble, we are sampling from q(θ|λ), an approximation
to p(θ|D)

Probabll BNNs 62 / 80

Bayesian Dropout

Inferences

Marginal likelihood: get estimates via importance sampling to compare
different hyperparameters

Posterior predictive distribution

do not disable dropout at test time

compute empirical estimates of predictive mean and variance from
stochastic outputs

for classification, consider uncertainty over class probabilities, for
example, boxplot samples of the probability p(y |x∗, θ) of each
outcome y for θ ∼ q(θ|λ)

multiple forward passes, but a single trained model

unlike in an ensemble, we are sampling from q(θ|λ), an approximation
to p(θ|D)

Probabll BNNs 62 / 80

Bayesian Dropout

Inferences

Marginal likelihood: get estimates via importance sampling to compare
different hyperparameters

Posterior predictive distribution

do not disable dropout at test time

compute empirical estimates of predictive mean and variance from
stochastic outputs

for classification, consider uncertainty over class probabilities, for
example, boxplot samples of the probability p(y |x∗, θ) of each
outcome y for θ ∼ q(θ|λ)

multiple forward passes, but a single trained model

unlike in an ensemble, we are sampling from q(θ|λ), an approximation
to p(θ|D)

Probabll BNNs 62 / 80

Bayesian Dropout

Extensions

Note a few things

to recover dropout, it was crucial to use a mixture of deltas as
variational approximation

this allowed us to sample parameters by having a mask over inputs
(rather than over parameters)

this trick seems general, but it does depend on the type of layer we
deal with

Probabll BNNs 63 / 80

An RNN is just a FFNN dynamically unfolded through time

• all we need is to sample the mask once per data point

• and reuse the same mask for all steps in the sequence

See Gal and Ghahramani (2016c).

CNNs can be reformulated as a linear operation followed by a pooling
non-linearity, in this view we need to drop outputs of the linear operation
(a parameterised inner product) before pooling. See Gal and Ghahramani
(2016a).

How about Transformer layers?

Bayesian Dropout

Summary

Bayesian posterior inference for NNs with negligible training effort

Bayesian posterior predictive at linear cost (one forward pass per sample)

Future research

better posterior approximations (fewer independence assumptions)

better handle on properties of kernels

BNNs typically underestimate variance

Probabll BNNs 64 / 80

Bayesian Dropout

Literature

Yarin Gal’s thesis and blogpost Gal (2016)

Dropout as Bayesian approximation Gal and Ghahramani (2016b, esp
appendix)

CNN and RNN variants Gal and Ghahramani (2016a,c)

Modern take on Bayesian deep learning Wilson (2020); Wilson and
Izmailov (2020)

Probabll BNNs 65 / 80

http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

Outline

1 Bayes: what and why?

2 Choosing a prior

3 Posterior Inference for BNNs

4 Bayesian Dropout

5 Example

Example

Detecting hate speech

We have N training data points labelled for hate speech, and we design
three models.
MLE

Y (i)|θ, x (i) ∼ Bern(sigmoid(f (x (i); θ)))

GP

F (1), . . . ,F (N)|α, x (1), . . . , x (N) ∼ N (0,K)

Y (i)|F (i) ∼ Bern(sigmoid(F (i))))

BNN

Θ|α ∼ N(0, ID)

Y (i)|θ, x (i) ∼ Bern(sigmoid(f (x (i); θ)))

Probabll BNNs 66 / 80

Here Ki,k = k(e(x (i)), e(x (j));α) for a choice of kernel, such as the radial
basis function, and e(·) an embedding function that maps x to RD , such
as average of fixed and pre-trained word2vec embeddings.

Example

Let’s make it tricky!

Suppose the word ‘red’ can be used to express hateful speech, and suppose that
in the training set 30% of the data points that contains ‘red’ are indeed hateful.

This is a very simple pattern to grasp. A BoW model can learn that.

The NN model is not trained to match the conditional frequency of Y |‘red’ ∈ x ,
rather the conditional frequency of Y |x , and the more flexible f (·; θ) is, the more
peaked the predicted likelihood Y |θ, x can be (that is, Var(Y |θ, x) is very low).

A model can explain the pattern about ‘red’ by learning to identify its meaning in
context (like humans attempt to do), or by correlating the label with anything
else that seems predictive enough of the pattern.

Assume, for example, that in this dataset it just so happens that every case in
which ‘red’ was hateful the speaker was British. There are plenty of low-level
distributional features in text that are predictive of British English. Clearly, none
of those has anything to do with ‘red’ being used to convey hateful speech.

Probabll BNNs 67 / 80

If a BoW model learns the pattern p(y = hateful|‘red’ ∈ x , θ) = 0.3 does
it mean it can classify the precise instances of x where ‘red’ is used to
express hate?

What do you think the conditional observed frequency of Y = 1|x for a
fixed x generally is?

I, for example, tend to use British spelling (and that’s no more than an
accident, for part of my education was in the UK).

Example

How do we know what the model knows?

The NN model has one objective, and one objective alone, to assign the highest
likelihood within the reach of its parametric family. It does not need to converge
to plausible explanations, it needs to converge to an explanation that makes the
data likely.

Though, presumably, there are many such explanations, after all, there are so
many ways to correlate that single instance of ‘red’ to the label without grasping
what makes ‘red’ such a negative word in any one case.

Suppose we have two test sets: one is held-out from training, in there roughly
30% of the occurrences of ‘red’ are indeed hateful; another is skewed, all of the
instances were written by American speakers, and 50% of the instances are
hateful.

High Var(Y |x∗,D) is indicative that there is not enough coherence across the
many hypotheses (classifiers) that are supported by all of our observations.

Probabll BNNs 68 / 80

The NN model will always assign a single deterministic probability of hate-
ful speech, no matter what instance of x containing ‘red’ we give it.
Weird things that can happen

• the model will assign higher probability for ‘hateful’ for almost all
instances containing British spelling in test set 1 (the model has the
wrong explanation);

• the model assigns higher probability for ‘hateful’ in about 30% of
the cases that contain ‘red’ in test set 1 though these are not the
30% that are indeed hateful (the model got the BoW pattern);

• the model consistently assigns low probability for ‘hateful’ in test set
2 (here it might be overusing the correlation with British spelling)

• the model assigns higher probability for ‘hateful’ in about 30% of
the cases in test set 2 (again, the model got the BoW pattern)

We have no clue when we can use it. We just use the model because ‘well,
it’s accuracy in test set 1 is 90%’. A number that says so little. What are
the 10% of mistakes? Will the mistakes differ if we have other hypotheses
supported by the data? What happens in test sets that are not, strictly
speaking, in-domain (held-out from training)?

Example

Will it work though?

What do you mean? Are we going to improve the accuracy of decisions?

Accuracy, as you are probably thinking of, has to do with binary assessments of
decisions that you are forced to make. If you are walking the land of uncertainty
estimates, you are past the idea of making decisions blindly. You want to find
support for your decisions, thus you should reserve yourself the right to say I
cannot decide, consult a human expert. So you want to look into more than
accuracy.

In general, no matter the problem, making a decision can incur loss. You can take
the loss into account. For example, perhaps misclassifying normal speech as
hateful costs you on average EUR 2 in annotation effort. On the other hand,
misclassifying hateful speech as normal can cost you much more in lawsuits (plus
extremely negative consequences to the users of your platform, many of which we
struggle to even assess).

Probabll BNNs 69 / 80

Rational decision making under uncertainty:

arg min
y

E[`(y ,Y ∗)|x∗,D]

The expectation is taken w.r.t. the posterior predictive distribution Y ∗
|x∗,D, here ` assesses the loss of predicting y when the correct label is y∗
with probability p(y ∗ |x∗,D).

See Barber (Chapter 7, 2012) which is freely available on-
line http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.

php?n=Brml.HomePage

http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage

Example

Ideas for analysing models and supporting decisions

MC estimates of posterior predictive variance.

In classification, ditch majority voting, use posterior predictive samples to
estimate a confusion matrix.

In regression, ditch MSE, estimate the probability of the outcome falling in a
reasonable interval (e.g., do you really care about predicting 3.2567 stars or
whether stars are more likely to be in (2, 3) than in any other unit sub-set?).

When comparing different models capable of producing uncertainty
estimates you can fix a level of certainty (a maximum posterior predictive
variance you shall tolerate) and refrain from deciding sometimes, then you
can draw precision/recall curves to compare models;

If you have a sensitive problem, misclassification for certain labels is
probably far more dangerous than for others, introduce a loss function and
play with it. Compare different models in terms of the decision-making loss.

Probabll BNNs 70 / 80

More ideas:

• Can we correlate classification error and estimates of posterior
predictive variance? This can tell us something about the quality of
the uncertainty estimate. Ideally, high variance should indicate that
decisions are not safe and are likely to lead to errors.

• In regression, how about estimating the smallest interval that will
contain the correct answer with X% probability.

Strategy: gather samples from Y∗|x∗,D and analyse what you got. Use
plots, ordered statistics, moments.

Don’t embrace Bayesian methods to push the leaderboard, that’s unlikely
to work. If you are thinking Bayesian you are already thinking deeper than
most leaderboards were designed for.

Example

Above all, be critical

Ovadia et al. (2019) present strategies to evaluate uncertainty estimates. Being
critical about uncertainty estimates is crucial. Going from NNs to BNNs we
enable uncertainty estimates, but the problem of supporting meaningful
conclusions is not solved. As variance is something we have to postulate, the way
we postulate it and the degree to which we do so matters. There are many knobs
and their impact on the quality of uncertainty estimates is not at all obvious.

If we think about our hateful speech detection example, it is true that the BNN
model holds potential, but there are clear risks: e.g. Bayesian dropout can get
dangerously close to MLE (can you see why?). If that happens we are back to
over-confident predictions. Replacing NNs by BNNs and not caring about what is
going on beyond reporting held-out accuracy is just as meaningful as ignoring the
entire problem all along and go on with MLE forever.

By the way, I would not be surprised if the GP model would be the one with the
better tradeoff.

Probabll BNNs 71 / 80

Our Bayesian models all have parameters that affect the conclusions we
can draw from them. If in our analysis, we find that we cannot use poste-
rior predictive variance to anticipate bad decisions, that is, to warn against
lack of knowledge, then we need to revisit our assumptions (this includes
the choice of kernel in a GP, choice of prior and prior hyperaparameters in
a BNN). We can revisit our choices in order to improve the meaningfulness
of our uncertainty estimates (i.e., to make them more predictive of errors),
that is absolutely safe, and is the beauty of the Bayesian paradigm: we
can incorporate knowledge into the prior. What we shouldn’t not fall vic-
tim to is to exploit superficially obvious shortcuts: for example, optimising
the choice of prior parameters or choice of kernel on marginal likelihood
(evidence) of observations is unlikely to make our posterior predictive es-
timates any more meaningful. Clearly, this is ML, we can do whatever we
like, and we can do that as well, as long as we know the limitations of our
tools for data analysis and are transparent about it.

Example

References I

David Barber. Bayesian Reasoning and Machine Learning. Cambridge
University Press, Cambridge, 2012. ISBN 978-0-521-51814-7. doi:
10.1017/CBO9780511804779. URL https://www.cambridge.org/

core/books/bayesian-reasoning-and-machine-learning/

37DAFA214EEE41064543384033D2ECF0.

José M Bernardo and Adrian FM Smith. Bayesian theory, volume 405.
John Wiley & Sons, 2009.

Christopher M. Bishop. Pattern recognition and machine learning
(information science and statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006. ISBN 0-387-31073-8. tex.date-added:
2019-09-19 08:15:14 +0000 tex.date-modified: 2019-09-19 08:15:14
+0000.

Probabll BNNs 72 / 80

https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0

Example

References II

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference:
A review for statisticians. Journal of the American statistical
Association, 112(518):859–877, 2017. Publisher: Taylor & Francis.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. Weight uncertainty in neural network. In Francis Bach and
David Blei, editors, Proceedings of the 32nd international conference on
machine learning, volume 37 of Proceedings of machine learning
research, pages 1613–1622, Lille, France, July 2015. PMLR. URL
http://proceedings.mlr.press/v37/blundell15.html.
tex.date-added: 2019-09-24 16:11:39 +0000 tex.date-modified:
2019-09-24 16:11:46 +0000 tex.pdf:
http://proceedings.mlr.press/v37/blundell15.pdf.

Probabll BNNs 73 / 80

http://proceedings.mlr.press/v37/blundell15.html

Example

References III

K. Funahashi. On the approximate realization of continuous mappings by
neural networks. Neural Netw., 2(3):183–192, May 1989. ISSN
0893-6080. doi: 10.1016/0893-6080(89)90003-8. URL
http://dx.doi.org/10.1016/0893-6080(89)90003-8. Number of
pages: 10 Publisher: Elsevier Science Ltd. tex.acmid: 71290 tex.address:
Oxford, UK, UK tex.date-added: 2019-09-19 05:15:10 +0000
tex.date-modified: 2019-09-19 05:15:17 +0000 tex.issue date: 1989.

Yarin Gal. Uncertainty in deep learning. PhD thesis, PhD thesis, University
of Cambridge, 2016. tex.date-added: 2019-09-19 11:45:00 +0000
tex.date-modified: 2019-09-24 16:02:09 +0000.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks
with Bernoulli approximate variational inference. In ICLR - workshop
track, 2016a.

Probabll BNNs 74 / 80

http://dx.doi.org/10.1016/0893-6080(89)90003-8

Example

References IV

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1050–1059, New
York, New York, USA, June 2016b. PMLR. URL
http://proceedings.mlr.press/v48/gal16.html.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in neural
information processing systems 29, pages 1019–1027. Curran Associates,
Inc., 2016c. URL http://papers.nips.cc/paper/

6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.

pdf.

Probabll BNNs 75 / 80

http://proceedings.mlr.press/v48/gal16.html
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf

Example

References V

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and
Andrew G Wilson. Loss Surfaces, Mode Connectivity, and Fast
Ensembling of DNNs. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 8789–8798. Curran
Associates, Inc., 2018. URL http://papers.nips.cc/paper/

8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.

pdf.

Andrew Gelman, John Carlin, Hal Stern, David Dunson, Aki Vehtari, and
Donald Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, third
edition, 2013.

Probabll BNNs 76 / 80

http://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
http://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
http://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf

Example

References VI

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley.
Stochastic variational inference. J. Mach. Learn. Res., 14(1):1303–1347,
May 2013. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2502581.2502622. Number
of pages: 45 Publisher: JMLR.org tex.acmid: 2502622 tex.date-added:
2019-09-24 13:46:13 +0000 tex.date-modified: 2019-09-24 13:46:13
+0000 tex.issue date: January 2013.

David J. C. MacKay. Bayesian interpolation. Neural Comput., 4(3):
415–447, May 1992a. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.415.
URL http://dx.doi.org/10.1162/neco.1992.4.3.415. Number of
pages: 33 Publisher: MIT Press tex.acmid: 148163 tex.address:
Cambridge, MA, USA tex.date-added: 2019-09-18 21:10:45 +0000
tex.date-modified: 2019-09-18 21:10:45 +0000 tex.issue date: May
1992.

Probabll BNNs 77 / 80

http://dl.acm.org/citation.cfm?id=2502581.2502622
http://dx.doi.org/10.1162/neco.1992.4.3.415

Example

References VII

David JC MacKay. Bayesian methods for adaptive models. PhD thesis,
California Institute of Technology, 1992b. tex.date-added: 2019-09-18
21:12:59 +0000 tex.date-modified: 2019-09-18 21:12:59 +0000.

David JC MacKay. Introduction to gaussian processes. NATO ASI Series F
Computer and Systems Sciences, 168:133–166, 1998. Publisher:
Springer Verlag tex.date-added: 2019-09-18 21:12:30 +0000
tex.date-modified: 2019-09-18 21:12:30 +0000.

Radford M. Neal. Priors for infinite networks. Technical report, Dept. of
Computer Science, University of Toronto, 1994. tex.date-added:
2019-09-18 21:06:36 +0000 tex.date-modified: 2019-09-18 21:07:22
+0000.

Radford M. Neal. Priors for infinite networks. In Bayesian learning for
neural networks, pages 29–53. Springer New York, New York, NY, 1996.
ISBN 978-1-4612-0745-0.

Probabll BNNs 78 / 80

Example

References VIII

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek.
Can you trust your model\textquotesingle s uncertainty? Evaluating
predictive uncertainty under dataset shift. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 13991–14002. Curran Associates, Inc., 2019. URL
http://papers.nips.cc/paper/

9547-can-you-trust-your-models-uncertainty-evaluating-predictive-uncertainty-under-dataset-shift.

pdf.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research, 15
(56):1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

Probabll BNNs 79 / 80

http://papers.nips.cc/paper/9547-can-you-trust-your-models-uncertainty-evaluating-predictive-uncertainty-under-dataset-shift.pdf
http://papers.nips.cc/paper/9547-can-you-trust-your-models-uncertainty-evaluating-predictive-uncertainty-under-dataset-shift.pdf
http://papers.nips.cc/paper/9547-can-you-trust-your-models-uncertainty-evaluating-predictive-uncertainty-under-dataset-shift.pdf
http://jmlr.org/papers/v15/srivastava14a.html

Example

References IX

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly Stochastic Variational
Bayes for non-Conjugate Inference. In International Conference on
Machine Learning, pages 1971–1979. PMLR, June 2014. URL
http://proceedings.mlr.press/v32/titsias14.html. ISSN:
1938-7228.

Andrew Gordon Wilson. The case for Bayesian deep learning. arXiv
preprint arXiv:2001.10995, 2020.

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a
probabilistic perspective of generalization. arXiv preprint
arXiv:2002.08791, 2020.

Probabll BNNs 80 / 80

http://proceedings.mlr.press/v32/titsias14.html

	Bayes: what and why?
	Choosing a prior
	Posterior Inference for BNNs
	Bayesian Dropout
	Example
	References

