
Deep Discrete Latent Variable Models

Wilker Aziz
ILLC @ UvA

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Discrete Latent Variables

Latent structure

Here I am plotting publication dates (from last class).
Left: observations for Y . Right: observations for Y |[freqsteam(x) > k].

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

Co
un

t

steam<k
steam>k

What do we learn from this observation?

Probabll Discrete LVMs 1 / 98

Rightmost plot: Suppose we separate our observations (labelled docu-
ments) in terms of how often a document contains the word steam. Our
historians claim that above some threshold k a document was likely writ-
ten after 1699 (when Thomas Savery demonstrated his first steam engine
to the British Royal society). Plotting two streams of data under such
criterion reveals what could have been 2 different Poisson distributions.

Visualisations: It might strike you as a surprise, but visualising data is
very much like modelling data, and therefore is not void of inductive bias.
We have to be very conscious about what it means to visualise data in
a certain way. For example, by choosing to plot curves according to the
increased frequency of a certain word, we might have made that aspect
artificially important for the phenomenon under consideration (e.g., many
other unknown factors might have contributed to the distribution of that
word’s frequency over the decades in consideration).

Discrete Latent Variables

Latent structure

Here I am plotting publication dates (from last class).
Left: observations for Y . Right: observations for Y |[freqsteam(x) > k].

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

Co
un

t

steam<k
steam>k

Marginally (left), it looked like our observations could have been drawn
from a Poisson distribution.

Probabll Discrete LVMs 1 / 98

Rightmost plot: Suppose we separate our observations (labelled docu-
ments) in terms of how often a document contains the word steam. Our
historians claim that above some threshold k a document was likely writ-
ten after 1699 (when Thomas Savery demonstrated his first steam engine
to the British Royal society). Plotting two streams of data under such
criterion reveals what could have been 2 different Poisson distributions.

Visualisations: It might strike you as a surprise, but visualising data is
very much like modelling data, and therefore is not void of inductive bias.
We have to be very conscious about what it means to visualise data in
a certain way. For example, by choosing to plot curves according to the
increased frequency of a certain word, we might have made that aspect
artificially important for the phenomenon under consideration (e.g., many
other unknown factors might have contributed to the distribution of that
word’s frequency over the decades in consideration).

Discrete Latent Variables

Latent structure

Here I am plotting publication dates (from last class).
Left: observations for Y . Right: observations for Y |[freqsteam(x) > k].

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

Co
un

t

steam<k
steam>k

But they might also have been the result of mixing (right) into one
population draws from two different Poisson distributions.

Probabll Discrete LVMs 1 / 98

Rightmost plot: Suppose we separate our observations (labelled docu-
ments) in terms of how often a document contains the word steam. Our
historians claim that above some threshold k a document was likely writ-
ten after 1699 (when Thomas Savery demonstrated his first steam engine
to the British Royal society). Plotting two streams of data under such
criterion reveals what could have been 2 different Poisson distributions.

Visualisations: It might strike you as a surprise, but visualising data is
very much like modelling data, and therefore is not void of inductive bias.
We have to be very conscious about what it means to visualise data in
a certain way. For example, by choosing to plot curves according to the
increased frequency of a certain word, we might have made that aspect
artificially important for the phenomenon under consideration (e.g., many
other unknown factors might have contributed to the distribution of that
word’s frequency over the decades in consideration).

Discrete Latent Variables

Latent structure

Here I am plotting publication dates (from last class).
Left: observations for Y . Right: observations for Y |[freqsteam(x) > k].

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

Co
un

t

steam<k
steam>k

The way a model views the data tells us something about latent factors
that account for (cause or correlate with) observed variance.

Probabll Discrete LVMs 1 / 98

Rightmost plot: Suppose we separate our observations (labelled docu-
ments) in terms of how often a document contains the word steam. Our
historians claim that above some threshold k a document was likely writ-
ten after 1699 (when Thomas Savery demonstrated his first steam engine
to the British Royal society). Plotting two streams of data under such
criterion reveals what could have been 2 different Poisson distributions.

Visualisations: It might strike you as a surprise, but visualising data is
very much like modelling data, and therefore is not void of inductive bias.
We have to be very conscious about what it means to visualise data in
a certain way. For example, by choosing to plot curves according to the
increased frequency of a certain word, we might have made that aspect
artificially important for the phenomenon under consideration (e.g., many
other unknown factors might have contributed to the distribution of that
word’s frequency over the decades in consideration).

Discrete Latent Variables

“But hidden states in an NN are latent structure, right?”

Latent structure here has to do with a partitioning of the probability space
in terms of intermediate outcomes that depend on one another.

Hidden layers in an NN output deterministic transformations of their
observed inputs. They are not statements about statistical dependence.

Example:

Y |w , λ ∼ Poisson

exp

(
D∑
i=1

wihi

)
︸ ︷︷ ︸

small NN

any one draw comes from the exact same Poisson.

Probabll Discrete LVMs 2 / 98

To reveal latent structure that is likely supported by observations, we need
to postulate a joint distribution where observations and latent variables
interact.

‘Interacting’ is a matter of statistical dependence.

Discrete Latent Variables

Multimodality

Remember we had some very dedicated historians identify when certain
documents had been written?

For a few books, we consulted with multiple experts.

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

2

4

6

8

10

12

14

16

18

Co
un

t

Book42

Left: observations for Y across the collection. Right: observations for Y given x is book-42.

a unimodal conditional Y |θ, x seems an unlikely choice here.

Probabll Discrete LVMs 3 / 98

When we plot observations for Y (e.g., left) we see the data marginally.

If we intend to model the data conditionally, that plot won’t help us pick a
likelihood family. That is because our choice should be informed by plots
of the kind Y |x . If we group our data into bins, where bin membership
depends on matching a specific value of x , more often than not our bins will
each contain a single data point. Should we conclude that conditionally
our data can be seen as deterministic? By no means!

Be aware of sneaky modelling assumptions. The combination of ‘1 bin
per unique document‘ and ‘one plot per bin‘ is a modelling choice (for
visualisation purposes, but still). One that suffers from data sparsity so
tremendously that it makes a random variable look deterministic. Con-
cluding that we can model the data deterministically is in fact an instance
of overfitting (by humans).

Note that sometimes we can construct more meaningful Y |x plots that
reveal the stochastic nature of the data. For example, if we have direct
access to the mechanism by which observations are generated, we can fix
X = x and draw Y multiple times (rightmost plot on the slide).

Discrete Latent Variables

“But NNs can, in principle, learn anything, right?”

Not quite. We predict a probability distribution by parameterising probability

mass or density functions. Thus our models are limited by the expressiveness of

the mass/density functions we choose.

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

100

200

300

400

500

600

Co
un

t

observations

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

200

400

600

800

1000

1200

1400

1600

Co
un

t

observations

Left: data look unimodal and could have been drawn from a Poisson.

Right: data look bimodal and could not have been drawn from any Poisson.

Probabll Discrete LVMs 4 / 98

Does this mean that we are better off predicting outcomes (in data space)
rather than distributions?

No, not really. Say we have some predictor x ∈ X and some response
y ∈ Y. We can train an NN to deterministically map any one x to a single
y . This excludes problems where the response exhibits variance (too large
a class to be overlooked!). If instead we train an NN to stochastically
map any one x to some y ∈ Y with certain probability (even if unknown),
we have essentially specified a probability distribution, but via an implicit
mechanism. That is, we’ve parameterised a random generator rather than
a prescribed parametric mass/density function. Such implicit models can
learn very (even arbitrarily) flexible distributions, but they pose many tech-
nical challenges. For example, mass/density assessments are intractable,
if your algorithm for parameter estimation requires those, you will have a
hard time; if your data are discrete (NLP is full of examples), and you rely
on derivatives for parameter estimation, you will be in big trouble.

So we will go on with prescribed distributions, and if we need more flexible
distributions (right), we will have to construct them carefully. For example,
via marginalisation of latent random variables.

Discrete Latent Variables

“But NNs can, in principle, learn anything, right?”

Not quite. We predict a probability distribution by parameterising probability

mass or density functions. Thus our models are limited by the expressiveness of

the mass/density functions we choose.

3 2 1 0 1 2 3 4 5
Demand

0

5

10

15

20

25

30

Co
un

t

observations

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Demand

0

20

40

60

80

Co
un

t

observations

Left: data look unimodal and could have been drawn from a Gaussian.

Right: data look bimodal and could not have been drawn from any Gaussian.

Probabll Discrete LVMs 4 / 98

Does this mean that we are better off predicting outcomes (in data space)
rather than distributions?

No, not really. Say we have some predictor x ∈ X and some response
y ∈ Y. We can train an NN to deterministically map any one x to a single
y . This excludes problems where the response exhibits variance (too large
a class to be overlooked!). If instead we train an NN to stochastically
map any one x to some y ∈ Y with certain probability (even if unknown),
we have essentially specified a probability distribution, but via an implicit
mechanism. That is, we’ve parameterised a random generator rather than
a prescribed parametric mass/density function. Such implicit models can
learn very (even arbitrarily) flexible distributions, but they pose many tech-
nical challenges. For example, mass/density assessments are intractable,
if your algorithm for parameter estimation requires those, you will have a
hard time; if your data are discrete (NLP is full of examples), and you rely
on derivatives for parameter estimation, you will be in big trouble.

So we will go on with prescribed distributions, and if we need more flexible
distributions (right), we will have to construct them carefully. For example,
via marginalisation of latent random variables.

Discrete Latent Variables

Can we combine simple distributions?

We can however mix K members of each family to get a good fit:

For example, with K = 2

Z |b ∼ Bernoulli(b)

Y |λ, b ∼ Poisson(λz)

Z |b ∼ Bernoulli(b)

Y |µ, σ, b ∼ N (µz , σ
2
z)

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

200

400

600

800

1000

1200

1400

1600

Co
un

t

lambda=6 (1660)
lambda=16 (1760)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Demand

0

20

40

60

80

Co
un

t

mu=-5 sigma^2=2
mu=+5 sigma^2=1

Probabll Discrete LVMs 5 / 98

This is known as a mixture model. The specific ones on the slide combines
two conditional distributions, namely, Y |θ,Z = 0 and Y |θ,Z = 1. The
model mixes its conditional components stochastically, a process controlled
by a distribution over components, whose probabilities p(z |θ) are known as
mixing weights. That is, with probability p(z |θ) the component Y |θ,Z = z
generates a draw in Y. In this example, p(Z = 1|θ) = b and p(Z = 0|θ) =
1− b.

For K > 2 components, Z |π ∼ Cat(π1, . . . , πK), thus p(z |π) = πz .

Discrete Latent Variables

Mixture model

A mixture model assigns probability

p(z , y |θ) = p(z |θ)p(y |z , θ)

to joint outcomes in the sample space Z ×Y. That is, it prescribes a joint
distribution over observed and unobserved random variables.

Probabll Discrete LVMs 6 / 98

A mixture model encodes the assumption that data points are each drawn
from one of a finite number of independent distributions.

The latent variable Z captures this unobserved component assignment. It
is governed by a distribution we call the prior. Oftentimes this is as simple
as a uniform distribution over the sample space Z.

Given an observation y drawn from the mixture, we can infer a distribution
over component assignments by basic probability calculus, this very famous
result is known as Bayes rule:

p(z |y , θ) =
p(z , y |θ)

p(y |θ)
=

p(y |z , θ)p(z |θ)∑
z′∈Z p(y |z ′, θ)p(z ′|θ)

Note that this posterior distribution p(z |y , θ) involves the marginal distri-
bution p(y |θ), which we discuss next.

Discrete Latent Variables

Prescribing multimodal distributions

The marginal distribution of the mixture model is potentially multimodal.
It assigns probability

p(y |θ) =
K∑

z=1

p(z |θ)p(y |z , θ)

to an outcome y ∈ Y by marginalisation of assignments z ∈ Z of the
latent random variable.

A draw from the marginal of the mixture model is a draw from one, and
only one, of its components (selected by drawing Z). Don’t confuse
mixing, in the mixture model sense, with interpolating.

Probabll Discrete LVMs 7 / 98

Say we have a dataset D of N i.i.d. observations for Y . Maximum likeli-
hood estimation of θ depends on the log-likelihood function, which in turn
depends on assessments of the marginal likelihood of each observation:

LD(θ) =
N∑

s=1

log p(y (s)|θ)

=
N∑

s=1

log
K∑

z(s)=1

p(y (s), z (s)|θ)

=
N∑

s=1

log
K∑

z(s)=1

p(y (s)|z (s), θ)p(z (s)|θ)

This scales linearly in the number of components.

Interpolation is something like this:
∑n

i= wiyi . Note this is note defined
for discrete variables. For numerical variables it is often not in the sample
space: an interpolation of Poisson draws can be a real value; an interpo-
lation of unit-norm vectors typically has norm less than 1.

Discrete Latent Variables

Posterior component assignment

Given an observation y we can infer a distribution over component
assignments via Bayes rule

p(z |y , θ) =
p(z , y |θ)

p(y |θ)
=

p(y |z , θ)p(z |θ)∑
z ′∈Z p(y |z ′, θ)p(z ′|θ)

MMs are one of the first options when it comes to organising massive
collections of unlabelled data into smaller groups (clustering).

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

Decade

0

50

100

150

200

250

300

Co
un

t

Z=1
Z=2
Z=3

Probabll Discrete LVMs 8 / 98

Here is a mixture model (3 Poisson components) of our historical data.

Components in a mixture model are not labelled with self-evident informa-
tion such as ‘pre-steam-engine’ and ‘post-steam-engine’, but sometimes
by inspecting likely component assignments we can recognise some salient
features data bring data points together under a certain component. We
can also use it to target annotation efforts, for example, to avoid under-
representing certain decades (in our running example).

Labelling components with self-evident information can be done by experts
with assistance of posterior queries or even semi-automatically by extend-
ing mixture models in interesting ways. See LDA (Blei et al., 2003), for
example.

Discrete Latent Variables

Predictors are welcome

It is also possible to use mixture models in conditional models:

p(z , y |x , θ) = p(z |x , θ)p(y |x , z , θ)

and we may use x in different ways, e.g.

p(z , y |x , θ) =p(z |θ)p(y |x , z , θ)

p(z , y |x , θ) =p(z |x , θ)p(y |z , θ)

Probabll Discrete LVMs 9 / 98

Whether to use predictors to parameterise mixing weights, the conditional
model, or both will depend on the application.

‘Parameterising mixing weights’ means specifying a distribution over K
mixture components, e.g.

Z |θ, x ∼ Cat(g(x ; θ))

An alternative to giving control of mixing weights to a neural network,
or fixing the weights to something superficially intuitive (like a uniform
distribution), is to prescribe a prior distribution over the mixing coefficients.
This would get you very close to Bayesian realms. Do you know any
distribution which has the space of K -dimensional probability vectors as
support?

Discrete Latent Variables

Semi-supervised learning

Suppose some documents are annotated and others are not (as in the
example), and say we model generatively.

For labelled documents, we observe (x , y) whose likelihood is

p(x , y |θ) = p(y |θ)p(x |y , θ)

and the likelihood of an unlabelled document x is

p(x |θ) =
∑
y∈Y

p(y |θ)p(x |y , θ)

Under the assumption that Y is a finite set, the likelihood of an observed
document is the marginal likelihood of a mixture model!

This is a very special mixture model for its components are labelled with
self-evident information, they are decades!

Probabll Discrete LVMs 10 / 98

A generative model of this kind can be thought of as a classifier (the
modelling a task point of view), after all, we need only apply Bayes rule to
obtain a conditional p(y |x∗, θ) that can power a decision rule for a novel
document x∗. And indeed, there are cases where this formulation improves
classification performance.

But, above all, a generative model of this kind is a model of all of our
observations (the modelling a random experiment point of view). Our ob-
servations are indeed a collection of documents, where some documents
(very few) are labelled for decade. Isn’t it rather arbitrary that we de-
cided to call the labelled instances training data and ignore all unlabelled
instances (the vast majority of our observations)? Isn’t it odd that most
of the data has not impact on any of our statistical considerations? This
generally happens when we are task-driven more than data-driven.

Besides powering a classification rule, the generative formulation could be
used to shed light onto vocabulary shifts over the decades. One way to
specify the component p(x |y , θ) is to assume it generates a document by
drawing words independently given a decade-specific parameter θy . That
is, Xi |θ, y ∼ Cat(θy) for i = 1, . . . , |x |.

Discrete Latent Variables

Competition or cooperation?

In a mixture model the components compete to generate a data point.
This means they cannot cooperate to account for some observed variance.

Sometimes, however, we want to stipulate the presence of a number of
latent factors that together contribute to our observations distributing the
way they do. Think of it in terms of clustering: sometimes we need
overlapping clusters, or rather, attributes.

For example, our documents are scientific documents, and the period in
consideration covers the European Scientific Revolution, as it came to be
named. A number of inventions and new ideas marked this period.
Documents were likely influenced by subsets of those ideas, rather than
any singe idea in particular.

Probabll Discrete LVMs 11 / 98

Like in mixture models we can recognise two roles for the class of models
we are about to develop.

They can serve task-driven goals and power models that can predict at-
tributes of an input (e.g., attributes of product, aspects of review, mor-
phological features of a word).

They can serve knowledge-seeking goals and power inferences about latent
structure that account (cause or correlate with) observed variance (e.g., in
what latent aspects/dimensions are data points related).

Discrete Latent Variables

Latent Factor Models

We have a prior over D-dimensional factor vectors (typically binary vectors)

Zd |b ∼ Bernoulli(bd) d = 1, . . . ,D

A sample z = 〈z1, . . . , zD〉 is used to parameterises a choice of likelihood.

For example, if we Y is Poisson distributed, we might have

Y |w , z ∼ Poisson

(
exp

(
D∑

d=1

wdzd

))

This induces a marginal likelihood

p(y |b,w) =
∑

z∈{0,1}D
p(y , z |w , b) =

∑
z∈{0,1}D

p(z |b)p(y |z ,w)

Probabll Discrete LVMs 12 / 98

You can think of a latent factor model as specifying an exponential number
of components, literally, up to 2D components, since each z in its sample
space can potentially lead to a different Poisson parameter. But the com-
ponents are not independent, they are all predicted by the same log-linear
model (in the example, the logarithm of the Poisson parameter is a linear
combination of z , i.e., D random binary attributes).

Whereas the marginal likelihood of the MM depends linearly on the number
of components, the marginal likelihood of the latent factor model depends
exponentially on the number of factors.

Once again, predictors are welcome. They can be used to parameterise the
distribution over factors, i.e., p(z |x , θ) and/or the conditional p(y |x , z , θ).

Discrete Latent Variables

Summary

Mixture model (‘learning clusters’)

Latent factor model (‘learning attributes or overlapping clusters’)

Applications:

unsupervised learning (e.g., word alignments, LDA, IBP)

semi-supervised learning (e.g., generative classifiers, disentanglement
learning)

transparency (e.g., latent rationales)

Probabll Discrete LVMs 13 / 98

Examples:

• word alignments (Brown et al., 1993; Vogel et al., 1996; Rios et al.,
2018)

• LDA (Blei et al., 2003)

• IBP (Ghahramani and Griffiths, 2006)

• semi-supervised deep generative models (Kingma et al., 2014; Zhou
and Neubig, 2017)

• latent rationales (Lei et al., 2016; Bastings et al., 2019)

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Exact Inference

Latent Variable Models

When talking about some generic model I will follow this convention

X is a random variable taking on values in a sample space X
x ∈ X is an observation

Z is a discrete random variable taking on values in a sample space Z
z ∈ Z is a latent assignment

the joint distribution factorises as p(x , z |θ) = p(z |θ)p(x |z , θ)

p(z |θ) is called the prior

p(x |z , θ) is called the likelihood

p(x |θ) is the marginal likelihood (or evidence)

and p(z |x , θ) = p(x ,z|θ)
p(x |θ) is the posterior

anything in the model can be parameterised by NNs

Probabll Discrete LVMs 14 / 98

Please don’t get confused, x here is not a predictor. To avoid clutter, I will
be omitting any potential predictors. If at one point I need to introduce
input-output type variables again, for example, when discussing a specific
application, I will say so explicitly.

Throughout, we shall assume we have N i.i.d. observations. With de-
terministic parameters θ, we can make all our arguments in terms of
a single observation x . Recall, the likelihood-function LD(θ) is just∑

x∼D log p(x |θ).

By the way, can you draw a plate diagram for our generic latent variable
model?

Exact Inference

Many models admit exact marginals

Examples (and the algorithms for marginalisation)

Mixture models (enumeration)

HMMs (forward algorithm)

CFGs (inside algorithm)

Spanning-tree random fields (matrix-tree theorem)

Tractable marginalisation depends on the conditional independence
assumptions of a model (e.g., in an HMM a hidden state is independent of
all but its preceding state), not on how that model’s probability
distributions are parameterised (e.g., a transition distribution in the HMM
may be stored in a table, predicted by a log-linear model or by an NN).

Marginalisation algorithms are generally harder to parallelise on GPUs.

Probabll Discrete LVMs 15 / 98

Recall that to use NNs in probabilistic models we converged to two con-
straints on the log-likelihood function:

• differentiability with respect to parameters

• and tractability

If p(z |θ) and p(x |z , θ) are differentiable functions of their parameters, there
is no impediment to gradient-based parameter estimation. Can you show
that to yourself? Hint: expand ∇θ log p(x |θ).

Tractability depends on whether p(x |θ) =
∑

z∈Z p(x , z |θ), or its loga-
rithm, can be evaluated in feasible time. Though it may seem so, this is
not always a matter of cardinality of Z.

For example, there is a Catalan number of trees in a CFG, yet because of the
strong independence assumptions in the model, the marginal likelihood is
computable in cubic-time (w.r.t. sequence length) via the inside algorithm.
Similarly, there is an exponential number of state sequences in an HMM,
but its marginal likelihood is computable in linear-time (w.r.t. sequence
length) via the forward algorithm.

Exact Inference

Neural {MM, HMM, CFG, CRF, . . . }

An NN-parameterisation of a classic discrete LVM, for which exact
marginals are tractable, still needs to preserve all of that model’s statistical
assumptions about unobserved random variables.

We won’t necessarily achieve a more complex distribution.

Though we may condition on complex data more effectively.

A neural HMM could look like:
p(x |θ) =

∑
z∈{1,...,K}|x|

∏|x |
i=1 p(zi |zi−1, x<i , θ)︸ ︷︷ ︸

Cat(zi |g(x<i ,zi−1;θ))

p(xi |zi , x<i)︸ ︷︷ ︸
Cat(xi |f (x<i ,zi ;θ))

the entire history of already generated words is available for conditioning

Probabll Discrete LVMs 16 / 98

NNs allow us to condition on complex observations, like a long history of
words x<i in unsupervised part-of-speech tagging.

We cannot, as easily, exploit that power to relax statistical conditional
independence assumptions, for those assumptions are crucial in order to
maintain exact and tractable access to marginal probabilities.

Think of it this way, what makes the HMM the HMM is the first-order (or
n-order) Markov assumption Zi ⊥ Zj |Zi−1 for j other than i and i − 1.
Relaxing that turns the HMM into something else, for which exact inference
is likely impossible. See Wang et al. (2018) for a neural HMM.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =

1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Gradient-based MLE

What happens when we autodiff the quantity log p(x |θ), which we
computed exactly and tractably?

Let’s inspect this gradient ourselves ∇θ log p(x |θ)

=
1

p(x |θ)
∇θp(x |θ) =

1

p(x |θ)
∇θ

∑
z∈Z

p(z , x |θ)

=
1

p(x |θ)

∑
z∈Z

∇θp(z , x |θ) =
1

p(x |θ)

∑
z∈Z

p(z , x |θ)∇θ log p(z , x |θ)

=
∑
z∈Z

p(z , x |θ)

p(x |θ)
∇θ log p(z , x |θ) =

∑
z∈Z

p(z |x , θ)∇θ log p(z , x |θ)

=Ep(z|x,θ) [∇θ log p(z , x |θ)]

Autodiff performs exact posterior inference for us!

Probabll Discrete LVMs 17 / 98

Gradient of log-marginal

• It all starts with the derivative of log, followed by chain rule again.

• The next step requires marginalisation.

• Now we need the gradient of a big sum.

• Derivatives are linear, so we can sum gradients instead.

• Sums are fine, but let’s use the log identity f ′ = f (log f)′

• The marginal is constant for z ∈ Z, so distribute it over the sum.

• This gives us a recognisable object! Joint probability, divided by
evidence, that’s the posterior! And we have a weighted average,
coefficients given by a pmf, and we sum over the entire support Z.

• We have an expectation! The gradient of the log-marginal of x is
the expected gradient of the log joint probability of x and z , where
x is observed and z is a draw from the posterior distribution Z |x , θ.
Dependency on Z makes the gradient of log-joint
G (Z) = ∇θ logP(Z ,X = x) a random variable.

• The gradient of the log-marginal ∇θ log p(x |θ) is deterministic, it is
the expected value EZ |X=x,θ[G (Z)]. You evaluate the marginal,
autodiff evaluates the expectation.

Exact Inference

Summary

Many discrete LVMs admit tractable marginalisation

Assessing the gradient of the log-marginal probability of an observation
corresponds to assessing an expectation under the posterior distribution
over latent variables. Think of it this way:

we need posterior inference to compute the gradient

and we need the gradient for parameter estimation

with exact marginals, autodiff assesses the gradient
thus abstracting posterior inference away

What happens when we cannot solve
∑

z∈Z p(x , z |θ)?

Probabll Discrete LVMs 18 / 98

Many interesting models are such that the exact marginal is intractable.
We’ve seen, for example, the case where p(x , z |θ) is a latent factor model.

Autodiff cannot differentiate a quantity that cannot be assessed. So if we
cannot compute the exact log-marginal probability of an observation, we
won’t get automatic posterior inference for free. We will have to resort to
rather explicit approaches to approximate inference.

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Variational Inference

Latent factor document model

Let us consider a latent factor model for document modelling:

a document x = (x1, . . . , xn) consists of n i.i.d. categorical draws
from that model

the categorical distribution in turn depends on binary latent factors
z = (z1, . . . , zD) which are also i.i.d.

Zj ∼ Bernoulli(α) (1 ≤ d ≤ D)

Xi |z ∼ Categorical (f (z ; θ)) (1 ≤ i ≤ n)

Here 0 < α < 1 specifies a Bernoulli prior
and f (·; θ) is a function computed by an NN, e.g.:

f (z ; θ) = softmax(Wz + b)

θ = {W , b}

Probabll Discrete LVMs 19 / 98

To keep the model simple we will assume Xi ⊥ Xj |Z for i 6= j . We could,
however, relax this conditional independence if we wanted. For example,
we could model Xi |θ, z , x<i ∼ Cat(f (z , x<i ; θ)).

Variational Inference

Graphical model

x1 x2 x3 x4

z1 z2 z3

α

Joint distribution: independent latent variables

Probabll Discrete LVMs 20 / 98

Suppose, for example, D = 3 and n = 4.

I omit θ from the graphical model, but every Xi |z depends on it.

Variational Inference

Intractable Marginals

In the latent factor model, marginalisation takes time O(2D)

p(x |α, θ) =
∑

z∈{0,1}D
p(z |α)p(x |z , θ)

=
∑

z∈{0,1}D

D∏
d=1

Bern(zd |α)
n∏

i=1

Cat(xi |f (z ; θ))

As a consequence, we cannot assess log p(x |α, θ) nor its gradient.

But we know that

∇θ log p(x |α, θ) = Ep(z|x ,α,θ)[∇θ log p(x , z |α, θ)]

Revision: in a previous version we missed the ∇θ operator on the right-hand side.
Probabll Discrete LVMs 21 / 98

Unfortunately, we cannot count on autodiff to solve the expectation for us
in this case.

Perhaps we can estimate the gradient?

Variational Inference

Gradient estimates?

Monte Carlo to the rescue?

∇θ log p(x |θ) = Ep(z|x ,θ) [∇θ log p(x , z |θ)]

MC
≈ 1

K

K∑
k=1

∇θ log p(x , z(k)|θ) where z(k) ∼ p(z |x , θ)

But the posterior is not available either!

p(z |x , θ) =
p(x , z |θ)

p(x |θ)

I am omitting α, the prior parameter. For simplicity, assume it is fixed.
Probabll Discrete LVMs 22 / 98

We know that MC estimation gives us an unbiased estimate of the gradi-
ent. But MC requires sampling independently from the distribution of the
random variable Z |X = x , θ, that is the posterior distribution in this case.

We may know the family to which the posterior belongs:

• The posterior of the mixture model is a Categorical distribution
(just like the prior), we also know an algorithm to assess the
posterior Categorical parameter: marginalisation by enumeration).

Then, Z |θ, x ∼ Cat(π) where πz = p(x,z|θ)∑K
z′=1

p(x,z′|θ) .

• The posterior of the latent factor model is a Gibbs distribution
(think of it as a generalisation of the Categorical distribution to
combinatorial sample spaces, like the space of binary vectors), and
we know the algorithm to assess its parameter, again, it’s
marginalisation by enumeration. This time, however, enumeration is

intractable: Z |θ, x ∼ Gibbs(π) where πz = p(x,z|θ)∑
z′∈{0,1}D p(x,z′|θ) .

Sometimes we do not even known the family. For example, if Z ∈ ND

and Zd ∼ Poisson(α), we have latent factor model with ordinal attributes.
The posterior family is unknown. It is not Gibbs, because the sample space
is unbounded, it’s not a product of Poisson distributions, because Zd are
correlated in the posterior.

Variational Inference

The Basic Problem

We want to compute the posterior over latent variables p(z |x , θ). This
involves computing the marginal likelihood

p(x |θ) =
∑
z∈Z

p(x , z |θ)

which is generally intractable. This problem motivates the use of
approximate inference techniques.

Probabll Discrete LVMs 23 / 98

You may think all we really need is the marginal and we shouldn’t bother
about the posterior. I’d argue there’s barely a difference. Probabilistic
inference (i.e., computations involving probability calculus) is the core of
the problem. Sometimes we see it as the need for a marginal, sometimes
as the need for a posterior.

Variational Inference

Strategy

Variational Inference

Accept that p(z |x , θ) is not computable.

Approximate it by an auxiliary distribution q(z) that is computable!

Choose q(z) as close as possible to p(z |x , θ) to obtain a faithful
approximation.

We are going to derive VI’s objective from two points of view

first, we will concentrate on the intractable log-marginal, and attempt
to bound it by a tractable quantity;

then we will concentrate on the intractable posterior, and attempt to
learn a tractable approximation to it;

The two views will turn out intimately related.

Probabll Discrete LVMs 24 / 98

This is the outline for variational inference (VI; Jordan et al., 1999; Blei
et al., 2017).

There are alternatives to VI, but they are not covered in this course. Here
are some pointers:

• Markov chain Monte Carlo (MCMC). Here is an excellent material
by Michael Betancourt: https://betanalpha.github.io/

assets/case_studies/markov_chain_monte_carlo.html.

• Expectation propagation (EP; Minka, 2001; Vehtari et al., 2020)

https://betanalpha.github.io/assets/case_studies/markov_chain_monte_carlo.html
https://betanalpha.github.io/assets/case_studies/markov_chain_monte_carlo.html

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Deriving VI from the log-evidence:

log p(x |θ) = log
∑
z∈Z

p(x , z |θ)

= log
∑
z∈Z

q(z)
p(x , z |θ)

q(z)

= logEq(z)

[
p(x , z |θ)

q(z)

]
JI
≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
This is the lowerbound on the log-evidence, also known as ELBO.
Crucially, it does not require the true posterior!

Probabll Discrete LVMs 25 / 98

The evidence lower-bound (ELBO):

• Let’s start from the log marginal.

• And introduce q(z) such that q(z) > 0 if p(z |x , θ) > 0.

• And note we got an expectation w.r.t. q(z), and recall that, unlike
p(z |x , θ), we know q(z), as we chose it.

• And Jensen’s inequality allows us to push the log through the
expectation.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Deriving VI from the log-evidence:

log p(x |θ) = log
∑
z∈Z

p(x , z |θ)

= log
∑
z∈Z

q(z)
p(x , z |θ)

q(z)

= logEq(z)

[
p(x , z |θ)

q(z)

]
JI
≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
This is the lowerbound on the log-evidence, also known as ELBO.
Crucially, it does not require the true posterior!

Probabll Discrete LVMs 25 / 98

The evidence lower-bound (ELBO):

• Let’s start from the log marginal.

• And introduce q(z) such that q(z) > 0 if p(z |x , θ) > 0.

• And note we got an expectation w.r.t. q(z), and recall that, unlike
p(z |x , θ), we know q(z), as we chose it.

• And Jensen’s inequality allows us to push the log through the
expectation.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Deriving VI from the log-evidence:

log p(x |θ) = log
∑
z∈Z

p(x , z |θ)

= log
∑
z∈Z

q(z)
p(x , z |θ)

q(z)

= logEq(z)

[
p(x , z |θ)

q(z)

]

JI
≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
This is the lowerbound on the log-evidence, also known as ELBO.
Crucially, it does not require the true posterior!

Probabll Discrete LVMs 25 / 98

The evidence lower-bound (ELBO):

• Let’s start from the log marginal.

• And introduce q(z) such that q(z) > 0 if p(z |x , θ) > 0.

• And note we got an expectation w.r.t. q(z), and recall that, unlike
p(z |x , θ), we know q(z), as we chose it.

• And Jensen’s inequality allows us to push the log through the
expectation.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Deriving VI from the log-evidence:

log p(x |θ) = log
∑
z∈Z

p(x , z |θ)

= log
∑
z∈Z

q(z)
p(x , z |θ)

q(z)

= logEq(z)

[
p(x , z |θ)

q(z)

]
JI
≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]

This is the lowerbound on the log-evidence, also known as ELBO.
Crucially, it does not require the true posterior!

Probabll Discrete LVMs 25 / 98

The evidence lower-bound (ELBO):

• Let’s start from the log marginal.

• And introduce q(z) such that q(z) > 0 if p(z |x , θ) > 0.

• And note we got an expectation w.r.t. q(z), and recall that, unlike
p(z |x , θ), we know q(z), as we chose it.

• And Jensen’s inequality allows us to push the log through the
expectation.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Deriving VI from the log-evidence:

log p(x |θ) = log
∑
z∈Z

p(x , z |θ)

= log
∑
z∈Z

q(z)
p(x , z |θ)

q(z)

= logEq(z)

[
p(x , z |θ)

q(z)

]
JI
≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
This is the lowerbound on the log-evidence, also known as ELBO.
Crucially, it does not require the true posterior!

Probabll Discrete LVMs 25 / 98

The evidence lower-bound (ELBO):

• Let’s start from the log marginal.

• And introduce q(z) such that q(z) > 0 if p(z |x , θ) > 0.

• And note we got an expectation w.r.t. q(z), and recall that, unlike
p(z |x , θ), we know q(z), as we chose it.

• And Jensen’s inequality allows us to push the log through the
expectation.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]

= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]

= log p(x |θ) +
∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

It looks like q(z) should be as close as possible to p(z |x , θ)!

Variational Inference Deriving VI with Jensen’s Inequality

VI derivation I

Let’s gain insight about this bound

log p(x |θ) ≥ Eq(z)

[
log

p(x , z |θ)

q(z)

]
= Eq(z)

[
log

p(z |x , θ)p(x |θ)

q(z)

]
= log p(x |θ) +

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= log p(x |θ)−
∑
z∈Z

q(z) log
q(z)

p(z |x , θ)

= log p(x |θ)− KL (q(z) || p(z |x , θ))︸ ︷︷ ︸
≥0

We have derived a lower bound on the log-evidence whose gap is exactly
KL (q(z) || p(z |x , θ)).

Probabll Discrete LVMs 26 / 98

What can be said about q(z)?

• Let’s start from the ELBO.

• Now let’s factorise the joint probability using the marginal and the
posterior (these are clearly not available to us, but they will help us
understand what is going on).

• The log-marginal is constant w.r.t. z , thus its expected valued
under q(z) is itself, i.e., log p(x |θ).

• We can apply a property of logs to rearrange the fraction.

• Which gives us the KL divergence from p(z |x , θ) to q(z). Recall,
KL (q || p) ≥ 0 and equality holds only if q = p.

It looks like q(z) should be as close as possible to p(z |x , θ)!

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))

Probabll Discrete LVMs 27 / 98

The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint probabilities (always tractable,
by assumption), and q(z).

Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))

Probabll Discrete LVMs 27 / 98

The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint probabilities (always tractable,
by assumption), and q(z).

Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))

Probabll Discrete LVMs 27 / 98

The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint probabilities (always tractable,
by assumption), and q(z).

Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))

Probabll Discrete LVMs 27 / 98

The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint probabilities (always tractable,
by assumption), and q(z).

Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))

Probabll Discrete LVMs 27 / 98

The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint probabilities (always tractable,
by assumption), and q(z).

Variational Inference Deriving VI from KL Divergence

VI derivation II

Derive VI by optimisation:

arg max
q(z)

− KL (q(z) || p(z |x , θ))

= arg max
q(z)

∑
z∈Z

q(z) log
p(z |x , θ)

q(z)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log
p(x , z |θ)

q(z)
−

constant︷ ︸︸ ︷
log p(x |θ)

= arg max
q(z)

∑
z∈Z

q(z) log p(x , z |θ)︸ ︷︷ ︸
Eq(z)[log p(x,z|θ)]

−
∑
z∈Z

q(z) log q(z)︸ ︷︷ ︸
−H(q(z))

Probabll Discrete LVMs 27 / 98

The previous derivation suggests that we should attempt to choose q(z)
such that the gap relative to the true posterior KL (q(z) || p(z |x , θ)) is as
small as possible.

• Let’s state that objective explicitly and seek some optimum q(z).

• We do not have access to the true posterior probability of any z ,
thus let’s decompose it via Bayes rule.

• Bayes rule reveals the marginal. Note that p(x |θ) does not depend
on z .

• Nor it depends on our choice of q(z).

• The final objective involves only joint probabilities (always tractable,
by assumption), and q(z).

Variational Inference Deriving VI from KL Divergence

ELBO

The evidence lowerbound (ELBO) is the optimisation objective in
variational inference.

arg max
q(z)

Ex∼D
[
Eq(z) [log p(x , z |θ)] + H (q(z))

]
=arg max

q(z)
Ex∼D

[
Eq(z) [log p(x |z , θ)]− KL (q(z) || p(z))

]
The ELBO circumvents intractable posterior inference by optimisation: we
search the approximate posterior that is closest to the true posterior in
terms of KL (q(z) || p(z |x , θ)). For example, if q(z |λ) is in a certain
parametric family, we search for its parameter.

Probabll Discrete LVMs 28 / 98

ELBO highlights

• we get to design q(z), so for example, while the true posterior of a
latent factor model depends on an intractable marginalisation, the
approximate posterior q(z) might simply combine D independent
Bernoulli distributions (one per latent factor);

• as we get to pick q(z), we get to choose a family that’s convenient,
for example, one for which we can obtain independent samples;

• tractable samples from q(z) means that we can obtain MC
estimates of the ELBO;

• that’s because for some given z ∈ Z, the ELBO only requires
assessing the joint probability log p(x , z |θ) and log q(z);

• ideally, we would choose a family for which the entropy is also
tractable.

Can you show to yourself that the second expression is true?

• if p(z) and q(z) are in the same (exponential) family, chances are
the term KL (q(z) || p(z)) is known in closed form;

Variational Inference Deriving VI from KL Divergence

Designing a tractable approximation

Mean field approximation:

make all latent variables independent under q(z).

pick a parametric family with tractable pmf.

Probabll Discrete LVMs 29 / 98

For example, in the latent factor model this takes the form:

q(z |λ) =
D∏

d=1

q(zd |λd)

=
D∏

d=1

Bern(zd |λd)

where λ is a vector that specifies D Bernoulli parameters.

Variational Inference Deriving VI from KL Divergence

Mean Field Latent Factor Model Inference

x1 x2 x3 x4

z1

λ1

z2

λ2

z3

λ3

Zd |λ ∼ Bernoulli(λd)

Probabll Discrete LVMs 30 / 98

Instead of inferring the true posterior Z |X = x , θ, a computation that
takes assessing the marginal probability p(x |θ), and thus requires all 2D

assessments of the joint probability p(x , z |θ), we optimise exactly D pa-
rameters. One per Bernoulli factor in the posterior approximation q(z |λ).

Clearly, such independence assumption is a strong simplification. In some
cases we need to design structured approximate posteriors, that is, approx-
imations that can correlate latent variables (we will hear more about those
later).

Variational Inference Deriving VI from KL Divergence

Amortised variational inference

Amortise the cost of inference using NNs

q(z1, . . . , zD |λ, x) =
D∏

d=1

qλ(zd |λ, x)

still mean field
Zd |λ, x ∼ Bernoulli(bd)

but with a shared set of parameters

where bD1 = NN(x ;λ)

Probabll Discrete LVMs 31 / 98

The true posterior Z |X = x , θ follows from conditioning on observed x .

With NNs, we can condition on complex data efficiently, thus it seems like
an interesting idea to jointly parameterise the independent factors of the
posterior approximation q(z |x , λ).

This leads to fewer parameters (more latent variables will not demand more
parameters) and has a potentially useful by-product: an inference model,
that is, a model of the latent variable.

Recall our notion of model: a mechanism to predict the outcomes of a
random experiment. So far, we’ve been attempting to model outcomes of
some joint distribution p(x , z |θ). In variational inference, we introduce a
rather unusual model, i.e., q(z |x , λ), it predicts another model’s posterior
inferences.

Overview

Joint distribution

x1 x2 x3 x4

z1 z2 z3

Posterior

x1 x2 x3 x4

z1 z2 z3

Mean field

x1 x2 x3 x4

z1

λ1

z2

λ2

z3

λ3

Amortised VI

x1 x2 x3 x4

z1 z2 z3

λ

Joint distribution: latent variables are independent a priori. This is a model
assumption.

Posterior: latent variables are correlated. That is because for any z ∈ Z
the value p(z |x , θ) depends on p(x , z ′|θ) for all z ′ ∈ Z via p(x |θ).

Mean field approximation: we postulate a simple distribution over latent
variables, e.g., where every variable is controlled by an independent distri-
bution. The parameters of these distributions are chosen to maximise the
ELBO.

Amortised VI: we design a probabilistic model of the latent variables. That
is, we design a tractable model that maps from observations to an approx-
imation of the true posterior distribution. This inference model is typically
parameterised by an inference (neural) network, its parameters are too
estimated to maximise the ELBO.

Variational Inference Deriving VI from KL Divergence

Summary

Posterior inference is often intractable because the marginal
likelihood (or evidence) p(x |θ) cannot be computed efficiently.

Variational inference approximates the posterior p(z |x , θ) with a
simpler distribution q(z).

The variational objective is the evidence lower bound (ELBO):

Eq(z) [log p(x , z |θ)] + H (q(z))

The solution to the ELBO minimises KL (q(z) || p(z |x , θ))

Probabll Discrete LVMs 33 / 98

There’s an interesting special case of VI which is likely familiar to you.
When q(z) = p(z |x , θ) we recover EM. Check the (optional) Appendix.

Variational Inference Deriving VI from KL Divergence

Summary

We design q(z) to be simple

A common approximation is the mean field approximation which
assumes that all latent variables are independent:

q(z |λ) =
D∏

d=1

q(zd |λd)

In amortised VI, we condition on a data point x to parameterise a
collection of variational factors

∏D
d=1 q(zd |x , λ) and we typically use

NNs for that.

Probabll Discrete LVMs 34 / 98

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Neural variational inference

Variational Inference Learning (NVIL)

Train a probabilistic model with NN likelihood using amortised variational
inference.

λ∗, θ∗ = arg max
λ,θ

Ex∼D

Eq(z|x ,λ)

[
log p(x , z |θ)

q(z |x , λ)

]
︸ ︷︷ ︸

ELBOx (λ,θ)

Approach parameter estimation via stochastic gradient-based optimisation.

Probabll Discrete LVMs 35 / 98

Now we discuss the concrete case of training deep discrete latent variable
models with amortised variational inference.

The main difference with respect to VI as we saw is that we will be learning
the inference model q(z |x , λ) along with the joint distribution p(x , z |θ).

Concretely, we will use gradient-based optimisation to update λ and θ
towards a (local) maximum of the ELBO.

The ELBOD(λ, θ), just like the log-likelihood function LD(θ), factorises
as a sum over i.i.d. observations.

Neural variational inference

Generative model

Again, let’s take the latent factor document model as an example:

a document x = (x1, . . . , xn) consists of n i.i.d. categorical draws
from that model

the categorical distribution in turn depends on binary latent factors
z = (z1, . . . , zD) which are also i.i.d.

Zd ∼ Bernoulli (α) (1 ≤ d ≤ D)

Xi |z ∼ Categorical (f (z ; θ)) (1 ≤ i ≤ n)

Here 0 < α < 1 specifies a Bernoulli prior (assume fixed)
and f (·; θ) is a function computed by an NN

f (z ; θ) = softmax(Wz + b)

θ = {W , b}

Probabll Discrete LVMs 36 / 98

We’ve chosen a very shallow NN for the likelihood. It’s just an affine
projection and a softmax (a log-linear model).

Nothing prevents us from using a more complex likelihood, both in terms of
parameterisation (e.g., a deeper FFNN) and statistical assumptions (e.g.,
a factorisation of the sequence x without Markov assumptions).

Neural variational inference

Example Model

x1 x2 x3 x4

z1 z2 z3

α

Joint distribution: independent latent variables

Probabll Discrete LVMs 37 / 98

I omit θ from the graphical model, but recall that every Xi |θ, z in the joint
distribution depends on it. Moreover, every Zd |θ, x in the true posterior
distribution also depends on it.

Neural variational inference

Example Model

x1 x2 x3 x4

z1 z2 z3

Posterior: latent variables are marginally dependent.

For our variational distribution we are going to assume that they are not
(recall: mean field assumption).

Probabll Discrete LVMs 37 / 98

I omit θ from the graphical model, but recall that every Xi |θ, z in the joint
distribution depends on it. Moreover, every Zd |θ, x in the true posterior
distribution also depends on it.

Neural variational inference

Mean Field Inference

x1 x2 x3 x4

z1 z2 z3

λ

The inference network needs to predict D Bernoulli parameters bD1 . Any
neural network with sigmoid output will do that job.

Probabll Discrete LVMs 38 / 98

The inference model is independent of θ.

That is the whole point, rather than actually inferring the true posterior, we
want to independently estimate a model to perform approximate inference.

Neural variational inference

Inference Model

Model

q(z |x , λ) =
D∏

d=1

Bern(zd |bd)

where bD1 = g(x ;λ)

Example architecture (inference network)

h =
1

n

n∑
i=1

Exi bD1 = sigmoid(Mh + c)

λ = {E ,M, c}

Probabll Discrete LVMs 39 / 98

Some will call q(z |x , λ) the inference network or recognition network. To
be consistent with the vocabulary we’ve developed so far, I prefer calling
the distribution Z |X = x , λ an inference model. The inference network
then is the NN architecture that parameterises the inference model. The
term recognition network comes from the literature around Wake-Sleep
(WS; Hinton et al., 1995), a heuristic form of VI that we discuss in the
(optional) Appendix.

In this example, the inference network is very shallow: we embed the
words using an embedding matrix E , combine them into an average h,
project that to D real values via an affine transformation Mh + c , and use
elementwise sigmoid to map each of those to he interval (0, 1), necessary
for the Bernoulli distributions. Nothing prevents us from using a more
complex architecture, for example: we could encode the entire document
using an LSTM and use the LSTM’s last hidden state instead of the average
of embeddings.

Making the inference model more complex, for example to correlate the
latent assignments, is harder. But, if we knew a more complex model
whose pmf is tractable (to assess and to sample from) we could use it
instead. Can you think of any?

Neural variational inference

Objective

Let’s concentrate on a single observation x ∈ D:

ELBOx(λ, θ) = Eq(z|x ,λ)

[
log

p(x , z |θ)

q(z |x , λ)

]
= Eq(z|x ,λ) [log p(x , z |θ)] + H (q(z |x , λ))

= Eq(z|x ,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))

Parameter estimation

arg max
θ,λ

Eq(z|x ,λ) [log p(x |z , θ)]− KL (q(z |x , λ) || p(z))

Probabll Discrete LVMs 40 / 98

Here I list all 3 forms of the ELBO for a single data point. Generally, we
need to pick a family for which we can sample from Z |X = x , λ and assess
the probability of a sample.

1. The first form is convenient when that is precisely all we can do.

2. The second form is convenient when in addition to that we can
assess the entropy H(Z |X = x , λ).

3. The last form is convenient when p(z) and q(z |x , λ) are in the same
exponential family.

Let’s focus on the 3rd form for now, as it suffices to illustrate all challenges
and the solutions we will develop. We have two terms, let’s call them the
expected likelihood term and the KL term, for brevity.

Our goal for the rest of this section is to compute ∇θ and ∇λ, or at least
unbiased estimates thereof, as we need those for optimisation.

Neural variational inference

KL term

KL between D independent Bernoulli distributions is tractable

KL (q(z |x , λ) || p(z |α)) =
D∑

d=1

KL (q(zd |x , λ) || p(zd |α))

=
D∑

d=1

KL (Bernoulli (bd)) || Bernoulli (α))

=
D∑

d=1

bd log
bd
α

+ (1− bd) log
1− bd
1− α

Probabll Discrete LVMs 41 / 98

In our example, the prior is a product of D independent Bernoulli distribu-
tions. Similarly, the inference model is a product of D independent distri-
butions. This means that the KL term is a sum of D independent KL terms.
Moreover, each KL (Zd |X = x , λ || Zd |α) is known analytically, since both
distributions are in the same exponential family (i.e., the Bernoulli family).

Being able to solve this expression in closed-form and with a computation
that scales linearly in D means that there’s no challenge in representing the
KL term in a computation graph, and autodiff will be able to differentiate
it with respect to λ (and even with respect to α should our prior not be
fixed).

Neural variational inference

Updating the generative model

∂

∂θ

Eq(z|x ,λ) [log p(x |z , θ)]−
constant wrt θ︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

= Eq(z|x ,λ)

[
∂

∂θ
log p(x |z , θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

S

S∑
s=1

∂

∂θ
log p(x |z(s), θ) where z(s) ∼ q(z |x , λ)

Monte Carlo (MC) estimation gives us a gradient estimate with a
computation that does not depend on the size of Z.

Probabll Discrete LVMs 42 / 98

Updating the generative model is actually rather simple

• The second term is constant in this case, and poses no challenge.
Even if it depend on θ, that is, if the prior depended on θ, as long
as we can evaluate the KL term, autodiff would differentiate it for
us. The first term seems less obvious, after all, we cannot solve the
expected value in closed-form (it would take a sum over z ∈ Z.
Avoiding this sum is the whole point.

• But note that the distribution we take expectations with respect to
is the inference model q(z |x , λ), which does not depend on θ. As
derivatives are linear, we compute an expected derivative instead of
differentiating an expected value.

• Expected values are great for we know how to estimate them
without bias. More often than not we use a single sample per
observation.

Neural variational inference

Updating the generative model

∂

∂θ

Eq(z|x ,λ) [log p(x |z , θ)]−
constant wrt θ︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

= Eq(z|x ,λ)

[
∂

∂θ
log p(x |z , θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

S

S∑
s=1

∂

∂θ
log p(x |z(s), θ) where z(s) ∼ q(z |x , λ)

Monte Carlo (MC) estimation gives us a gradient estimate with a
computation that does not depend on the size of Z.

Probabll Discrete LVMs 42 / 98

Updating the generative model is actually rather simple

• The second term is constant in this case, and poses no challenge.
Even if it depend on θ, that is, if the prior depended on θ, as long
as we can evaluate the KL term, autodiff would differentiate it for
us. The first term seems less obvious, after all, we cannot solve the
expected value in closed-form (it would take a sum over z ∈ Z.
Avoiding this sum is the whole point.

• But note that the distribution we take expectations with respect to
is the inference model q(z |x , λ), which does not depend on θ. As
derivatives are linear, we compute an expected derivative instead of
differentiating an expected value.

• Expected values are great for we know how to estimate them
without bias. More often than not we use a single sample per
observation.

Neural variational inference

Updating the generative model

∂

∂θ

Eq(z|x ,λ) [log p(x |z , θ)]−
constant wrt θ︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

= Eq(z|x ,λ)

[
∂

∂θ
log p(x |z , θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

S

S∑
s=1

∂

∂θ
log p(x |z(s), θ) where z(s) ∼ q(z |x , λ)

Monte Carlo (MC) estimation gives us a gradient estimate with a
computation that does not depend on the size of Z.

Probabll Discrete LVMs 42 / 98

Updating the generative model is actually rather simple

• The second term is constant in this case, and poses no challenge.
Even if it depend on θ, that is, if the prior depended on θ, as long
as we can evaluate the KL term, autodiff would differentiate it for
us. The first term seems less obvious, after all, we cannot solve the
expected value in closed-form (it would take a sum over z ∈ Z.
Avoiding this sum is the whole point.

• But note that the distribution we take expectations with respect to
is the inference model q(z |x , λ), which does not depend on θ. As
derivatives are linear, we compute an expected derivative instead of
differentiating an expected value.

• Expected values are great for we know how to estimate them
without bias. More often than not we use a single sample per
observation.

Neural variational inference

Updating the generative model

∂

∂θ

Eq(z|x ,λ) [log p(x |z , θ)]−
constant wrt θ︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

= Eq(z|x ,λ)

[
∂

∂θ
log p(x |z , θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

S

S∑
s=1

∂

∂θ
log p(x |z(s), θ) where z(s) ∼ q(z |x , λ)

Monte Carlo (MC) estimation gives us a gradient estimate with a
computation that does not depend on the size of Z.

Probabll Discrete LVMs 42 / 98

Updating the generative model is actually rather simple

• The second term is constant in this case, and poses no challenge.
Even if it depend on θ, that is, if the prior depended on θ, as long
as we can evaluate the KL term, autodiff would differentiate it for
us. The first term seems less obvious, after all, we cannot solve the
expected value in closed-form (it would take a sum over z ∈ Z.
Avoiding this sum is the whole point.

• But note that the distribution we take expectations with respect to
is the inference model q(z |x , λ), which does not depend on θ. As
derivatives are linear, we compute an expected derivative instead of
differentiating an expected value.

• Expected values are great for we know how to estimate them
without bias. More often than not we use a single sample per
observation.

Neural variational inference

Updating the inference model

∂

∂λ

Eq(z|x ,λ) [log p(x |z , θ)]−
analytical︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

=
∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]− ∂

∂λ
KL (q(z |x , λ) || p(z))︸ ︷︷ ︸
analytical computation

The first term again requires approximation by sampling, but there is a
problem

Probabll Discrete LVMs 43 / 98

Updating the inference model is not as simple

• The KL term is tractable to assess, thus autodiff will handle it, and
we don’t need to worry about the exact form of the gradient.

• The first term requires an intractable sum over z ∈ Z which we
mean to avoid. Unfortunately this time we cannot simply ‘push’ the
derivative inside as the expectation is taken w.r.t. q(z |x , λ), which
clearly depends on λ.

Neural variational inference

Updating the inference model

∂

∂λ

Eq(z|x ,λ) [log p(x |z , θ)]−
analytical︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

=
∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]− ∂

∂λ
KL (q(z |x , λ) || p(z))︸ ︷︷ ︸
analytical computation

The first term again requires approximation by sampling, but there is a
problem

Probabll Discrete LVMs 43 / 98

Updating the inference model is not as simple

• The KL term is tractable to assess, thus autodiff will handle it, and
we don’t need to worry about the exact form of the gradient.

• The first term requires an intractable sum over z ∈ Z which we
mean to avoid. Unfortunately this time we cannot simply ‘push’ the
derivative inside as the expectation is taken w.r.t. q(z |x , λ), which
clearly depends on λ.

Neural variational inference

Updating the inference model

∂

∂λ

Eq(z|x ,λ) [log p(x |z , θ)]−
analytical︷ ︸︸ ︷

KL (q(z |x , λ) || p(z))

=
∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]− ∂

∂λ
KL (q(z |x , λ) || p(z))︸ ︷︷ ︸
analytical computation

The first term again requires approximation by sampling, but there is a
problem

Probabll Discrete LVMs 43 / 98

Updating the inference model is not as simple

• The KL term is tractable to assess, thus autodiff will handle it, and
we don’t need to worry about the exact form of the gradient.

• The first term requires an intractable sum over z ∈ Z which we
mean to avoid. Unfortunately this time we cannot simply ‘push’ the
derivative inside as the expectation is taken w.r.t. q(z |x , λ), which
clearly depends on λ.

Neural variational inference

MC is not differentiable

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∂

∂λ

∑
z

q(z |x , λ) log p(x |z , θ)

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)︸ ︷︷ ︸
not an expectation

MC estimator is non-differentiable

Differentiating the expression does not yield an expectation: cannot
approximate via MC

Probabll Discrete LVMs 44 / 98

Unfortunately, we cannot turn to MC either, as we can only MC estimate
expected values, and the derivative of the expected likelihood term does
not seem to be an expected value.

• Writing the expected likelihood explicitly we can see that though we
can sum derivatives, as differentiation is linear, we cannot hope to
evaluate all |Z| terms in our lifetime.

• This shows that in general we cannot differentiate an MC estimate.

Neural variational inference

MC is not differentiable

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∂

∂λ

∑
z

q(z |x , λ) log p(x |z , θ)

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)︸ ︷︷ ︸
not an expectation

MC estimator is non-differentiable

Differentiating the expression does not yield an expectation: cannot
approximate via MC

Probabll Discrete LVMs 44 / 98

Unfortunately, we cannot turn to MC either, as we can only MC estimate
expected values, and the derivative of the expected likelihood term does
not seem to be an expected value.

• Writing the expected likelihood explicitly we can see that though we
can sum derivatives, as differentiation is linear, we cannot hope to
evaluate all |Z| terms in our lifetime.

• This shows that in general we cannot differentiate an MC estimate.

Neural variational inference

MC is not differentiable

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∂

∂λ

∑
z

q(z |x , λ) log p(x |z , θ)

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)︸ ︷︷ ︸
not an expectation

MC estimator is non-differentiable

Differentiating the expression does not yield an expectation: cannot
approximate via MC

Probabll Discrete LVMs 44 / 98

Unfortunately, we cannot turn to MC either, as we can only MC estimate
expected values, and the derivative of the expected likelihood term does
not seem to be an expected value.

• Writing the expected likelihood explicitly we can see that though we
can sum derivatives, as differentiation is linear, we cannot hope to
evaluate all |Z| terms in our lifetime.

• This shows that in general we cannot differentiate an MC estimate.

Neural variational inference

MC is not differentiable

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∂

∂λ

∑
z

q(z |x , λ) log p(x |z , θ)

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)︸ ︷︷ ︸
not an expectation

MC estimator is non-differentiable

Differentiating the expression does not yield an expectation: cannot
approximate via MC

Probabll Discrete LVMs 44 / 98

Unfortunately, we cannot turn to MC either, as we can only MC estimate
expected values, and the derivative of the expected likelihood term does
not seem to be an expected value.

• Writing the expected likelihood explicitly we can see that though we
can sum derivatives, as differentiation is linear, we cannot hope to
evaluate all |Z| terms in our lifetime.

• This shows that in general we cannot differentiate an MC estimate.

Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Probabll Discrete LVMs 45 / 98

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f)′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.

Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Probabll Discrete LVMs 45 / 98

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f)′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.

Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Probabll Discrete LVMs 45 / 98

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f)′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.

Neural variational inference

Score Function Estimator

We can again use the log identity for derivatives

∂

∂λ
Eqλ(z|x) [log pθ(x |z)]

=
∑
z

∂

∂λ
(q(z |x , λ)) log p(x |z , θ)

=
∑
z

q(z |x , λ)
∂

∂λ
(log q(z |x , λ)) log p(x |z , θ)

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
︸ ︷︷ ︸

expected gradient :)

We turned the derivative of an expectation into the expected value of a
derivative!

Probabll Discrete LVMs 45 / 98

It turns out we’ve already seen this form of gradient when we derived the
general form of ∇θ log p(x |θ) for models with tractable marginals.

• We can use the log identity for derivatives (i.e., f ′ = f (log f)′) to
re-express the sum as an expectation with respect to q(z |x , λ).

• This estimator is known as the score function estimator.

Neural variational inference

Score Function Estimator

We can now build an MC estimator

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

MC
≈ 1

S

S∑
s=1

log p(x |z(s), θ)
∂

∂λ
log q(z(s)|x , λ)

where z(s) ∼ q(z |x , λ)

Probabll Discrete LVMs 46 / 98

And, as always, expected gradients can be estimated free of bias via MC.

Neural variational inference

Score Function Estimator

We can now build an MC estimator

∂

∂λ
Eq(z|x ,λ) [log p(x |z , θ)]

= Eq(z|x ,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
MC
≈ 1

S

S∑
s=1

log p(x |z(s), θ)
∂

∂λ
log q(z(s)|x , λ)

where z(s) ∼ q(z |x , λ)

Probabll Discrete LVMs 46 / 98

And, as always, expected gradients can be estimated free of bias via MC.

Neural variational inference

Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b)

log p(x |z)

log p(x |z)

Probabll Discrete LVMs 47 / 98

Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);

Neural variational inference

Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b)

log p(x |z)

log p(x |z)

Probabll Discrete LVMs 47 / 98

Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);

Neural variational inference

Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b)

log p(x |z)

log p(x |z)

Probabll Discrete LVMs 47 / 98

Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);

Neural variational inference

Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b)

log p(x |z)

log p(x |z)

Probabll Discrete LVMs 47 / 98

Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);

Neural variational inference

Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b) log p(x |z)

log p(x |z)

Probabll Discrete LVMs 47 / 98

Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);

Neural variational inference

Computation Graph

x

b

λ

inference network

z ∼ Bernoulli (b)

log p(x |z)

θ

generative network

KL

α

log q(z |b) log p(x |z)

log p(x |z)

Probabll Discrete LVMs 47 / 98

Let’s put everything together in a computation graph

• we map an observation x to the parameters b of our inference
model, this uses an NN with parameters λ;

• with b we can parameterise Bernoulli distributions (in our example),
from which we know how to obtain independent samples;

• besides, we have our main neural network, which maps from z to the
log-probability log p(x |z , θ), this is a quantity that depends on θ and
whose gradient we need in order to update the generative model;

• with b and the prior parameter α, we can assess
KL (q(z |x , λ) || p(z |α)), whose gradient we need in order to update
the inference model;

• finally, to update the inference model we also need the score
function estimator, which is log p(x |z , θ)∇λ log q(z |x , λ); to obtain
that gradient using autodiff we need to get a gradient for
log q(z |x , λ) and scale it by the log-likelihood log p(x |z , θ); we can
do that if we can achieve that by multiplying log q(z |x , λ) and a
‘detached’ (constant) version of log p(x |z , θ);

Neural variational inference

Stochastic surrogate objectives

A computation node whose gradient estimates the gradient we want:

log p(x |z , θ)− KL (q(z |x , λ || p(z |α)) + log p(x |z , �θ)︸ ︷︷ ︸
‘detached’

log q(z |x , λ)

Can you verify ∇θ,λ of the surrogate objective yields the correct partials?

Probabll Discrete LVMs 48 / 98

Implementation goal: we want a forward pass whose backward estimates
∇λ,θ ELBOx(λ, θ).

That is, a quantity whose gradient w.r.t. λ, θ as computed by an auto-
matic differentiation algorithm yields the correct partial derivatives for the
generative and the inference model.

To implement this efficiently, we resort to the notion of a ‘detached’ com-
putation node. That is, a node whose value is interpreted as a constant (its
outputs are disconnected from NN parameters during back-propagation).
For brevity, we will denote this by crossing the parameter out (e.g., �θ).

Neural variational inference

Score Function Estimator: Variance

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

Empirically this estimator often exhibits high variance.

the magnitude of log p(x |z , θ) varies widely

the model likelihood does not contribute to direction of gradient
(it only scales the gradient)

Probabll Discrete LVMs 49 / 98

We can get gradient estimates and they are unbiased, but they are too
noisy to be useful out of the box.

How can we reduce the variance of an estimator?

Neural variational inference

Score Function Estimator: Variance

We could:

sample more (better MC estimates)

use variance reduction techniques (e.g. baselines and control variates)

Probabll Discrete LVMs 50 / 98

Sampling more is not a very efficient way to reduce variance, as the variance
drops with the square root of the number of samples.

Perhaps we can do better with less computation?

Neural variational inference

Score Function Estimator: Variance

Idea: standardise the “reward” r(z) := log p(x |z , θ) to have a mean at 0
and a variance of 1

Keep a moving average of the mean and variance log p(x |z , θ): µ̂ and

σ̂2.

r̂(z) = log p(x |z,θ)−µ̂
σ̂2

It can be shown that

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]
= Eq(z|x,λ)

[
r̂(z)

∂

∂λ
log q(z |x , λ)

]

Probabll Discrete LVMs 51 / 98

To understand why this is true, we need to learn more about control variates
(Greensmith et al., 2004). You can see the (optional) Appendix.

In reinforcement learning, µ̂ is also known as a baseline. Score function
estimation along with baselines is what is known as REINFORCE (Williams,
1992).

Neural variational inference

Score Function Estimator: Variance

We can show that using these baselines does not bias the estimator.

We can add more advanced control variates and other baselines to
further reduce variance.

More about this in the (optional) Appendix.

Probabll Discrete LVMs 52 / 98

Neural variational inference

Back to the KL term

We can easily relax our constraints about the tractability of the KL term.
In general, we could have the approximate posterior and the prior in
different families, and the prior could even depend on θ.

Recall that

KL (q(z |x , λ) || p(z |θ)) = Eq(z|x ,λ)

[
log

q(z |x , λ)

p(z |θ)

]
If this quantity is not tractable we can work with gradient estimates of it:

∇θ KL (q(z |x , λ) || p(z |θ)) = Eq(z|x ,λ) [−∇θ log p(z |θ)]

∇λ KL (q(z |x , λ) || p(z |θ)) = Eq(z|x ,λ)

[
log

q(z |x , λ)

p(z |θ)
∇λ log q(z |x , λ)

]

Probabll Discrete LVMs 53 / 98

By rewriting the KL term as an expectation we can see that its gradient
w.r.t. θ is indeed the expected value of a gradient, which we can MC-
estimate directly.

For the gradient w.r.t. λ, we again need to use the score function estimator,
which re-expressed the gradient as an expected value, for which then MC
estimation is possible.

It is an interesting exercise to show to yourself that the expression for
∇λ KL (q(z |x , λ) || p(z |θ)) indeed holds.

Neural variational inference

Pros and Cons

Pros:

Applicable to all distributions

Many libraries come with samplers for common distributions

Cons:

High Variance!

Probabll Discrete LVMs 54 / 98

Unfortunately, for discrete latent variables there is not alternative. Com-
bating the cons takes studying and deploying variance reduction techniques
such as control variates (Gu et al., 2016; Tucker et al., 2017; Grathwohl
et al., 2018), Rao-Blackwellization (Liu et al., 2019), as well as other tech-
niques developed in reinforcement learning literature (Rennie et al., 2017;
Schulman et al., 2017).

Mohamed et al. (2019) present an extensive survey.

NVIL’s original paper (Mnih and Gregor, 2014). The same ideas power
black-box inference outside the context of deep learning (Ranganath et al.,
2014). Mnih and Rezende (2016) present an extension based on multiple-
sample MC estimates.

Neural variational inference

What next?

1 check the quizzes on Canvas

2 check the list of exercises

3 come to the live session with questions

Next week we talk about deep latent variable models with continuous
random variables.

Probabll Discrete LVMs 55 / 98

Outline

1 Discrete Latent Variables

2 Exact Inference

3 Variational Inference
Deriving VI with Jensen’s Inequality
Deriving VI from KL Divergence

4 Neural variational inference

5 Appendix (optional)

Appendix (optional) Implicit distributions

Implicit distributions

We can specify a stochastic map by using a (deterministic) NN and a
source of random numbers with probability density function s(ε). For each
(x , ε) the mapping is deterministic, but the noise source induces a random
variable Y |θ, x . The implicit likelihood assigned to an outcome y given x
is p(y |x , θ) =

∫
{ε:f (x ,ε;θ)=y} s(ε)dε.

In words, we must ‘integrate the density of the noise source for every
possible way you can map x to y .‘

Probabll Discrete LVMs 56 / 98

Appendix (optional) KL divergence

KL divergence

The Kullback-Leibler divergence (or relative entropy) measures the
divergence of a distribution q from a distribution p.

KL (q(z) || p(z)) = Eq(z)

[
log q(z)

p(z)

]
KL (q(z) || p(z)) =

∫
q(z) log q(z)

p(z)dz (continuous)

KL (q(z) || p(z)) =
∑

z q(z) log q(z)
p(z) (discrete)

Probabll Discrete LVMs 57 / 98

Appendix (optional) KL divergence

KL divergence - Properties

Properties

KL (q(z) || p(z)) ≥ 0 with
equality iff q(z) = p(z).

−KL (q(z) || p(z)) = Eq(z)

[
log p(z)

q(z)

]
≤ 0.

We want: supp(q) ⊆ supp(p); otherwise KL (q(z) || p(z)) =∞

Probabll Discrete LVMs 58 / 98

Appendix (optional) Wake-Sleep Algorithm

Wake-Sleep Algorithm

Generalise latent variables to neural networks.

Train generative neural model.

Use variational inference! (kind of)

Hinton et al. (1995)

Probabll Discrete LVMs 59 / 98

Appendix (optional) Wake-Sleep Algorithm

Wake-Sleep Architecture

2 neural networks:

A generation network to model the data (the one we want to
optimise) – parameters: θ

An inference (recognition) network (to model the latent variable) –
parameters: λ

Original setting: binary hidden units

Training is performed in a “hard EM” fashion

Probabll Discrete LVMs 60 / 98

Appendix (optional) Wake-Sleep Algorithm

Generator

z3

z1 z2

x1 x2 x3

θ θ θ θ

θ θ

Probabll Discrete LVMs 61 / 98

The ‘generator’ in wake-sleep is a generative model parameterised by NNs.
In the original paper they had an NN with stochastic binary hidden units.

For example, this NN has 3 layers:

• The top one parameterises a distribution over 1 binary random
variable, i.e., Z3|θ0 ∼ Bern(f (3)(θ3)).

• The middle one conditions on a sampled z3 and parameterises a
distribution over 2 binary random variables, i.e.,

Zd |θ,Z = z3 ∼ Bern(f
(2)
d (z3; θ2)) for d = 1, 2.

• The bottom one conditions on sampled 〈z1, z2〉 and parameterises a
distribution over 3 observed random variables. For example, if x is a
document we might make an independence assumption:
Xi |θ,Z1 = z1,Z2 = z2 ∼ Cat(f (1)(z1, z2; θ1)).

The true posterior is clearly intractable, it takes assessing p(x |θ) =∑
z∈Z p(x , z |θ) and Z is the space of all possible configuration of binary

assignments.

I omit arrows from z2 to x1 and from z1 to x3 to keep the drawing cleaner.

Appendix (optional) Wake-Sleep Algorithm

Recognition Network

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ

Probabll Discrete LVMs 62 / 98

The recognition network is much like our inference models. It predicts
a distribution over Z1,Z2,Z3 given x using an independent model with
parameters λ.

This is an NN that predicts as many rvs as there are latent variables in the
original model. Think of it as a conditional model of the latent variable.

• We condition on x and parameterise a distribution over two binary
random variables, i.e.: Zd |λ, x ∼ Bern(g (1)(x ;λ1)) for d = 1, 2.

• We then condition on sampled 〈z1, z2〉 and parameterise a
distribution over one binary random variable
Z3|λz1, z2 ∼ Bern(g (2)(z1, z2;λ2))

The recognition network specifies an approximate posterior distribution

which assumes layer-wise independence, that is, Z
(`)
d in a layer ` is inde-

pendent on all but the latent variables in the layer below.

I omit arrows from x2 to z2 and from x3 to z1 to keep the drawing cleaner.

Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Training

Wake Phase

Use inference network to sample hidden unit setting z from q(z |x , λ)

Update generation parameters θ to maximize joint log-likelihood of
data and latents p(x , z |θ)

Sleep Phase

Produce dream sample z , x̃ from the joint distribution

Update inference parameters λ to maximize probability of latent state
q(z |x̃ , λ)

Probabll Discrete LVMs 63 / 98

Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Training

Wake Phase

Use inference network to sample hidden unit setting z from q(z |x , λ)

Update generation parameters θ to maximize joint log-likelihood of
data and latents p(x , z |θ)

Sleep Phase

Produce dream sample z , x̃ from the joint distribution

Update inference parameters λ to maximize probability of latent state
q(z |x̃ , λ)

Probabll Discrete LVMs 63 / 98

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

Probabll Discrete LVMs 64 / 98

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

Probabll Discrete LVMs 64 / 98

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

λ λ λ λ

Probabll Discrete LVMs 64 / 98

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ

Probabll Discrete LVMs 64 / 98

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ

Probabll Discrete LVMs 64 / 98

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Update

Compute log p(x , z |θ) and update θ

z3

z1 z2

x1 x2 x3

θ θ θ θ

θ θ

Probabll Discrete LVMs 65 / 98

With the sample z we got from the recognition network we can compute
the joint probability of z and the observation x . This means we do not need
to sample from p(x , z |θ). The alternative to sampling from the recognition
model, would be to fix the observation x and sample from the induced true
posterior p(z |x , θ), which is clearly intractable.

Thus the recognition model plays a role identical to that of the inference
model in variational inference.

As in VI, because we sampled from q(z |x , λ) it is easy to compute a
gradient estimate w.r.t. θ.

The situation is much more difficult w.r.t. λ, as we saw in the section
about NVIL. To circumvent difficulties with gradient estimation for λ, in
Wake-Sleep, we change the optimisation objective in order to update the
recognition model. In particular, we update the recognition model as to
maximise the probability of some ‘dream data’ which we obtain by sampling
from the generative model.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

Probabll Discrete LVMs 66 / 98

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

z1 z2

θ θ

Probabll Discrete LVMs 66 / 98

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

z1 z2

x̃1 x̃2 x̃3

θ θ θ θ

θ θ

Probabll Discrete LVMs 66 / 98

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

z1 z2

x̃1 x̃2 x̃3

θ θ θ θ

θ θ

Probabll Discrete LVMs 66 / 98

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Update

Compute log q(z |x̃ , λ) and update λ

z3

z1 z2

x̃1 x̃2 x̃3

λ λ λ λ

λ λ

Probabll Discrete LVMs 67 / 98

The last ingredient is to assess the likelihood of the sampled z given the
sampled x̃ under the recognition model and update λ as to maximise it.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Objective

Objective
arg min

θ
Ex∼D [KL (q(z |x , λ) || p(z |x , θ))]

= arg max
θ

Ex∼D [ELBOx(θ, λ)− log p(x |θ)]

Approximation: optimize the lower-bound alone.

Probabll Discrete LVMs 68 / 98

The wake-phase really is identical to VI. It makes the exact same approx-
imation, namely, that optimising a lowerbound on the log-evidence is a
good idea.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Objective

Objective
arg max

θ
Ex∼D [ELBOx(θ, λ)]

= arg max
θ

Ex∼D
[
Eq(z|x ,λ) [log p(z , x |θ)] + H[q(z |x , λ)]

]
Gradient wrt θ for x ∼ D (an observation)

∇θEq(z|x ,λ) [log p(z , x |θ)] + ∇θH[q(z |x , λ)]

= Eq(z|x ,λ) [∇θ log p(z , x |θ)]

MC
≈ ∇θ log p(z , x |θ) where z ∼ q(z |x , λ)

Probabll Discrete LVMs 69 / 98

The gradient of the entropy term is 0 and the first term corresponds to
the expected value of a stochastic gradient, thus MC gives us the unbiased
estimate we need for optimisation of the generative model.

In this phase z if fixed to a random draw from q(z |x , λ), from the point
of view of the generative model it is as if z had been observed, so we can
maximise log p(z , x |θ).

This is simply supervised learning with imputed latent data!

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Objective

Objective
arg max

λ
Ex∼D [ELBOx(θ, λ)]

= arg max
λ

Ex∼D
[
Eq(z|x ,λ) [log p(z , x |θ)] + H[q(z |x , λ)]

]
Gradient wrt λ for x ∼ D (an observation)

∇λEq(z|x ,λ) [log p(z , x |θ)] + ∇λH[q(z |x , λ)]

Let’s change the objective!

Probabll Discrete LVMs 70 / 98

When we turn to the gradient of the recognition model, as expected, things
are not as easy.

Of course we know that we can re-express both gradients (recall that the
entropy term is also an expected value) as expected gradients via the score
function method. That’s not how WS goes about this problem. Instead,
WS changes the objective of optimisation.

This means that for the sleep phase, where we are supposed to learn the
recognition model, we are not going to do VI. This is indeed a pity,
since maximising the ELBO w.r.t. our choice of λ indeed minimises
KL (q(z |x , λ) || p(z |x , θ)).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 71 / 98

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 71 / 98

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 71 / 98

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 71 / 98

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 71 / 98

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 71 / 98

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Assumes fake data x̃ and latent variables z to be fixed random draws from
p(x , z |θ) via

z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

and maximises log q(z |x̃ , λ).

Probabll Discrete LVMs 72 / 98

This is maximum likelihood estimation for the recognition model as if z , x̃
were observed.

Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Algorithm

Advantages

Simple layer-wise updates

Amortised inference: all latent variables are inferred from the same
weights λ

Drawbacks

Inference and generative models are trained on different objectives

Inference weights λ are updated on fake data x̃

Generative weights are bad initially, giving wrong signal to the
updates of λ

Probabll Discrete LVMs 73 / 98

Though there are some instances of WS even in modern literature, its
drawbacks are generally quite serious.

Appendix (optional) Expectation Maximisation

Frequentist VI

Variational Objective

arg max
q(z)

Eq(z) [log p(x , z)] + H (q(z))

This finds us the best posterior approximation for a given model.

Frequentist VI also optimises the model!

arg max
q(z),p(x ,z)

Eq(z) [log p(x , z)] + H (q(z))

Probabll Discrete LVMs 74 / 98

VI comes from the literature of Bayesian modelling, where it is known as
Variational Bayes (VB). VB is concerned with the variational objective,
i.e., ELBO maximisation w.r.t. a choice of posterior approximation q(z).

In Frequentism, we make point estimates of model parameters. Whereas
we can use the ELBO for that it should be noted that we are not opti-
mising log-likelihood, as customary in MLE, rather we are optimising a
lowerbound on it. There’s no guarantee that an improvement in the lower-
bound correlates with an improvement in log-evidence.

Appendix (optional) Expectation Maximisation

Coordinate Ascent Variational Inference

Frequentist VI can be performed via coordinate ascent. This can be done
as a 2-step procedure.

1 Maximise (regularised) expected log-density.

arg max
q(z)

Eq(z) [log p(x , z)] + H (q(z))

2 Optimise generative model.

arg max
p(x ,z)

Eq(z) [log p(x , z)] + H (q(z))︸ ︷︷ ︸
constant

Probabll Discrete LVMs 75 / 98

Think of our choice of approximation q(z) and our choice of model p(x , z)
as coordinates.

We can keep one fixed an update the other. This is coordinate ascent VI.

Appendix (optional) Expectation Maximisation

Unconstrained (exact) optimisation

What’s the solution to the following?

arg max
q(z)∈Q

Eq(z) [log p(x , z)] + H (q(z))

(assume Q is large enough a family)

The true posterior p(z |x)! Exactly because

arg max
q(z)∈Q

ELBO = arg min
q(z)∈Q

KL (q(z) || p(z |x))

and KL is never negative and 0 iff q(z) = p(z |x).

Probabll Discrete LVMs 76 / 98

Appendix (optional) Expectation Maximisation

Unconstrained (exact) optimisation

What’s the solution to the following?

arg max
q(z)∈Q

Eq(z) [log p(x , z)] + H (q(z))

(assume Q is large enough a family)

The true posterior p(z |x)! Exactly because

arg max
q(z)∈Q

ELBO = arg min
q(z)∈Q

KL (q(z) || p(z |x))

and KL is never negative and 0 iff q(z) = p(z |x).

Probabll Discrete LVMs 76 / 98

Appendix (optional) Expectation Maximisation

Recap: EM Algorithm

E-step arg max
q(z)

Eq(z) [log p(x , z)] + H (p(z |x))

= p(z |x)

M-step arg max
p(x ,z)

Ep(z|x) [log p(x , z)] + H (p(z |x))︸ ︷︷ ︸
constant

Probabll Discrete LVMs 77 / 98

Expectation Maximisation (EM) is Frequentist variational inference where
we solve ELBO maximisation w.r.t. q(z) exactly, that is, we use the true
posterior p(z |x).

q(z) = p(z |x)

KL (q(z) || p(z |x)) = 0

The implication is that we can only do EM for models whose marginals are
already tractable (and thus do not require approximate inference).

When we train a discrete LVM with exact marginals via gradient-based
MLE, we solve the marginal exactly (sidestepping the E-step), and the
M-step approximately, via iterative gradient-based ascent.

Appendix (optional) Variance reduction

Score Function Estimator: Variance

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

Empirically this estimator often exhibits high variance.

the magnitude of log p(x |z , θ) varies widely

the model likelihood does not contribute to direction of gradient

Probabll Discrete LVMs 78 / 98

The simplest way to reduce variance of an MC estimator is to sample more
times. But it’s not very efficient.

Appendix (optional) Variance reduction

Control variates

Intuition
To estimate E[f (z)] via Monte Carlo we compute the empirical average of
f̂ (z) where f̂ (z) is chosen so that E[f̂ (z)] = E[f (z)] and Var(f) > Var(f̂).

Probabll Discrete LVMs 79 / 98

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 80 / 98

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 80 / 98

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])

it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 80 / 98

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 80 / 98

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 80 / 98

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 81 / 98

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 81 / 98

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0

yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 81 / 98

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 81 / 98

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 81 / 98

Appendix (optional) Variance reduction

MC

We then use the estimate

f̄
MC
≈ 1

S

(
S∑

s=1

f (z(s))− bc(z(s))

)
+ bc̄

And recall that for us

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and z(s) ∼ q(z |x , λ)

Probabll Discrete LVMs 82 / 98

Appendix (optional) Variance reduction

MC

We then use the estimate

f̄
MC
≈ 1

S

(
S∑

s=1

f (z(s))− bc(z(s))

)
+ bc̄

And recall that for us

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and z(s) ∼ q(z |x , λ)

Probabll Discrete LVMs 82 / 98

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]

=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 83 / 98

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 83 / 98

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 83 / 98

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 83 / 98

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 83 / 98

Appendix (optional) Variance reduction

Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) =

(log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.

Probabll Discrete LVMs 84 / 98

Appendix (optional) Variance reduction

Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) = (log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.

Probabll Discrete LVMs 84 / 98

Appendix (optional) Variance reduction

Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) = (log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.

Probabll Discrete LVMs 84 / 98

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 85 / 98

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 85 / 98

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 85 / 98

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 85 / 98

Appendix (optional) Variance reduction

Trainable baselines

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L2-loss.

min
ω

(b(x ;ω)− log p(x |z , θ))2

Probabll Discrete LVMs 86 / 98

Appendix (optional) Variance reduction

Summary

In practice the score function estimator leads to high variance
gradient estimates.

We can design control variates that reduce estimator variance, yet do
not bias the estimator!

Probabll Discrete LVMs 87 / 98

Appendix (optional) Variance reduction

References I

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural
predictions with differentiable binary variables. In Proceedings of the
57th annual meeting of the association for computational linguistics,
pages 2963–2977, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1284. URL
https://www.aclweb.org/anthology/P19-1284.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
Allocation. J. Mach. Learn. Res., 3:993–1022, 2003. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=944919.944937.
Publisher: JMLR.org.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference:
A review for statisticians. Journal of the American statistical
Association, 112(518):859–877, 2017. Publisher: Taylor & Francis.

Probabll Discrete LVMs 88 / 98

https://www.aclweb.org/anthology/P19-1284
http://dl.acm.org/citation.cfm?id=944919.944937

Appendix (optional) Variance reduction

References II

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
Robert L. Mercer. The Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguistics, 19(2):263–311, 1993.
URL https://www.aclweb.org/anthology/J93-2003.

Zoubin Ghahramani and Thomas L. Griffiths. Infinite latent feature models
and the Indian buffet process. In Y. Weiss, B. Schölkopf, and J. C.
Platt, editors, Advances in Neural Information Processing Systems 18,
pages 475–482. MIT Press, 2006.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David
Duvenaud. Backpropagation through the Void: Optimizing control
variates for black-box gradient estimation. In International Conference
on Learning Representations, 2018. URL
https://openreview.net/forum?id=SyzKd1bCW.

Probabll Discrete LVMs 89 / 98

https://www.aclweb.org/anthology/J93-2003
https://openreview.net/forum?id=SyzKd1bCW

Appendix (optional) Variance reduction

References III

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance
Reduction Techniques for Gradient Estimates in Reinforcement
Learning. Journal of Machine Learning Research, 5(Nov):1471–1530,
2004. ISSN ISSN 1533-7928. URL
https://www.jmlr.org/papers/v5/greensmith04a.html.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp:
Unbiased backpropagation for stochastic neural networks. In ICLR
(poster), 2016. URL http://arxiv.org/abs/1511.05176. tex.cdate:
1451606400000 tex.crossref: conf/iclr/2016.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The Wake-Sleep
Algorithm for Unsupervised Neural Networks. Science, 268:1158–1161,
1995.

Probabll Discrete LVMs 90 / 98

https://www.jmlr.org/papers/v5/greensmith04a.html
http://arxiv.org/abs/1511.05176

Appendix (optional) Variance reduction

References IV

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An Introduction to Variational Methods for Graphical
Models. Machine Learning, 37(2):183–233, November 1999. ISSN
1573-0565. doi: 10.1023/A:1007665907178. URL
https://doi.org/10.1023/A:1007665907178.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. Semi-supervised Learning with Deep Generative Models. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 3581–3589. Curran Associates, Inc., 2014.

Probabll Discrete LVMs 91 / 98

https://doi.org/10.1023/A:1007665907178

Appendix (optional) Variance reduction

References V

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing Neural
Predictions. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 107–117, Austin,
Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1011. URL
https://www.aclweb.org/anthology/D16-1011.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael Jordan, and Jon
Mcauliffe. Rao-blackwellized stochastic gradients for discrete
distributions. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
ICML, volume 97 of Proceedings of machine learning research, pages
4023–4031, Long Beach, California, USA, June 2019. PMLR. URL
http://proceedings.mlr.press/v97/liu19c.html. tex.pdf:
http://proceedings.mlr.press/v97/liu19c/liu19c.pdf.

Probabll Discrete LVMs 92 / 98

https://www.aclweb.org/anthology/D16-1011
http://proceedings.mlr.press/v97/liu19c.html

Appendix (optional) Variance reduction

References VI

Thomas P. Minka. Expectation propagation for approximate bayesian
inference. In Proceedings of the seventeenth conference on uncertainty
in artificial intelligence, UAI’01, pages 362–369, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-1.
Number of pages: 8 Place: Seattle, Washington.

Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning
in Belief Networks. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, ICML’14,
pages II–1791–II–1799. JMLR.org, 2014. event-place: Beijing, China.

Andriy Mnih and Danilo Rezende. Variational inference for monte carlo
objectives. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
ICML, volume 48 of Proceedings of machine learning research, pages
2188–2196, New York, New York, USA, June 2016. PMLR. URL
http://proceedings.mlr.press/v48/mnihb16.html. tex.pdf:
http://proceedings.mlr.press/v48/mnihb16.pdf.

Probabll Discrete LVMs 93 / 98

http://proceedings.mlr.press/v48/mnihb16.html

Appendix (optional) Variance reduction

References VII

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih.
Monte Carlo Gradient Estimation in Machine Learning. CoRR,
abs/1906.10652, 2019. URL http://arxiv.org/abs/1906.10652.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational
Inference. In Samuel Kaski and Jukka Corander, editors, Proceedings of
the Seventeenth International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning Research,
pages 814–822, Reykjavik, Iceland, April 2014. PMLR. URL
http://proceedings.mlr.press/v33/ranganath14.html.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and
Vaibhava Goel. Self-Critical Sequence Training for Image Captioning. In
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1179–1195.
IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.131. URL
https://doi.org/10.1109/CVPR.2017.131.

Probabll Discrete LVMs 94 / 98

http://arxiv.org/abs/1906.10652
http://proceedings.mlr.press/v33/ranganath14.html
https://doi.org/10.1109/CVPR.2017.131

Appendix (optional) Variance reduction

References VIII

Miguel Rios, Wilker Aziz, and Khalil Sima’an. Deep Generative Model for
Joint Alignment and Word Representation. In Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 1011–1023, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-1092.
URL https://www.aclweb.org/anthology/N18-1092.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel.
Gradient estimation using stochastic computation graphs. In Advances
in neural information processing systems, pages 3528–3536, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. CoRR,
abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Probabll Discrete LVMs 95 / 98

https://www.aclweb.org/anthology/N18-1092
http://arxiv.org/abs/1707.06347

Appendix (optional) Variance reduction

References IX

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha
Sohl-Dickstein. REBAR: Low-variance, unbiased gradient estimates for
discrete latent variable models. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages
2627–2636. Curran Associates, Inc., 2017.

Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran,
Swupnil Sahai, Paul Blomstedt, John P Cunningham, David
Schiminovich, and Christian P Robert. Expectation propagation as a
way of life: A framework for bayesian inference on partitioned data.
Journal of Machine Learning Research, 21(17):1–53, 2020.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-Based word
alignment in statistical translation. In COLING 1996 volume 2: The
16th international conference on computational linguistics, 1996. URL
https://www.aclweb.org/anthology/C96-2141.

Probabll Discrete LVMs 96 / 98

https://www.aclweb.org/anthology/C96-2141

Appendix (optional) Variance reduction

References X

Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan Gan, and Hermann
Ney. Neural Hidden Markov Model for Machine Translation. In
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 377–382,
Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-2060. URL
https://www.aclweb.org/anthology/P18-2060.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning, 8(3-4):
229–256, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696.

Probabll Discrete LVMs 97 / 98

https://www.aclweb.org/anthology/P18-2060
https://doi.org/10.1007/BF00992696

Appendix (optional) Variance reduction

References XI

Chunting Zhou and Graham Neubig. Multi-space variational
encoder-decoders for semi-supervised labeled sequence transduction. In
Proceedings of the 55th annual meeting of the association for
computational linguistics (volume 1: Long papers), pages 310–320,
Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1029. URL
https://www.aclweb.org/anthology/P17-1029.

Probabll Discrete LVMs 98 / 98

https://www.aclweb.org/anthology/P17-1029

	Discrete Latent Variables
	Exact Inference
	Variational Inference
	Deriving VI with Jensen's Inequality
	Deriving VI from KL Divergence

	Neural variational inference
	Appendix (optional)
	Implicit distributions
	KL divergence
	Choosing Distributions
	Wake-Sleep Algorithm
	Expectation Maximisation
	Variance reduction

	References

