
Deep Discrete Latent Variable Models

Wilker Aziz
ILLC @ UvA

Outline

1 Appendix (optional)

Appendix (optional) Implicit distributions

Implicit distributions

We can specify a stochastic map by using a (deterministic) NN and a
source of random numbers with probability density function s(ε). For each
(x , ε) the mapping is deterministic, but the noise source induces a random
variable Y |θ, x . The implicit likelihood assigned to an outcome y given x
is p(y |x , θ) =

∫
{ε:f (x ,ε;θ)=y} s(ε)dε.

In words, we must ‘integrate the density of the noise source for every
possible way you can map x to y .‘

Probabll Discrete LVMs 1 / 43

Appendix (optional) KL divergence

KL divergence

The Kullback-Leibler divergence (or relative entropy) measures the
divergence of a distribution q from a distribution p.

KL (q(z) || p(z)) = Eq(z)

[
log q(z)

p(z)

]
KL (q(z) || p(z)) =

∫
q(z) log q(z)

p(z)dz (continuous)

KL (q(z) || p(z)) =
∑

z q(z) log q(z)
p(z) (discrete)

Probabll Discrete LVMs 2 / 43

Appendix (optional) KL divergence

KL divergence - Properties

Properties

KL (q(z) || p(z)) ≥ 0 with
equality iff q(z) = p(z).

−KL (q(z) || p(z)) = Eq(z)

[
log p(z)

q(z)

]
≤ 0.

We want: supp(q) ⊆ supp(p); otherwise KL (q(z) || p(z)) =∞

Probabll Discrete LVMs 3 / 43

Appendix (optional) Wake-Sleep Algorithm

Wake-Sleep Algorithm

Generalise latent variables to neural networks.

Train generative neural model.

Use variational inference! (kind of)

Hinton et al. (1995)

Probabll Discrete LVMs 4 / 43

Appendix (optional) Wake-Sleep Algorithm

Wake-Sleep Architecture

2 neural networks:

A generation network to model the data (the one we want to
optimise) – parameters: θ

An inference (recognition) network (to model the latent variable) –
parameters: λ

Original setting: binary hidden units

Training is performed in a “hard EM” fashion

Probabll Discrete LVMs 5 / 43

Appendix (optional) Wake-Sleep Algorithm

Generator

z3

z1 z2

x1 x2 x3

θ θ θ θ

θ θ

Probabll Discrete LVMs 6 / 43

The ‘generator’ in wake-sleep is a generative model parameterised by NNs.
In the original paper they had an NN with stochastic binary hidden units.

For example, this NN has 3 layers:

• The top one parameterises a distribution over 1 binary random
variable, i.e., Z3|θ0 ∼ Bern(f (3)(θ3)).

• The middle one conditions on a sampled z3 and parameterises a
distribution over 2 binary random variables, i.e.,

Zd |θ,Z = z3 ∼ Bern(f
(2)
d (z3; θ2)) for d = 1, 2.

• The bottom one conditions on sampled 〈z1, z2〉 and parameterises a
distribution over 3 observed random variables. For example, if x is a
document we might make an independence assumption:
Xi |θ,Z1 = z1,Z2 = z2 ∼ Cat(f (1)(z1, z2; θ1)).

The true posterior is clearly intractable, it takes assessing p(x |θ) =∑
z∈Z p(x , z |θ) and Z is the space of all possible configuration of binary

assignments.

I omit arrows from z2 to x1 and from z1 to x3 to keep the drawing cleaner.

Appendix (optional) Wake-Sleep Algorithm

Recognition Network

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ

Probabll Discrete LVMs 7 / 43

The recognition network is much like our inference models. It predicts
a distribution over Z1,Z2,Z3 given x using an independent model with
parameters λ.

This is an NN that predicts as many rvs as there are latent variables in the
original model. Think of it as a conditional model of the latent variable.

• We condition on x and parameterise a distribution over two binary
random variables, i.e.: Zd |λ, x ∼ Bern(g (1)(x ;λ1)) for d = 1, 2.

• We then condition on sampled 〈z1, z2〉 and parameterise a
distribution over one binary random variable
Z3|λz1, z2 ∼ Bern(g (2)(z1, z2;λ2))

The recognition network specifies an approximate posterior distribution

which assumes layer-wise independence, that is, Z
(`)
d in a layer ` is inde-

pendent on all but the latent variables in the layer below.

I omit arrows from x2 to z2 and from x3 to z1 to keep the drawing cleaner.

Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Training

Wake Phase

Use inference network to sample hidden unit setting z from q(z |x , λ)

Update generation parameters θ to maximize joint log-likelihood of
data and latents p(x , z |θ)

Sleep Phase

Produce dream sample z , x̃ from the joint distribution

Update inference parameters λ to maximize probability of latent state
q(z |x̃ , λ)

Probabll Discrete LVMs 8 / 43

Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Training

Wake Phase

Use inference network to sample hidden unit setting z from q(z |x , λ)

Update generation parameters θ to maximize joint log-likelihood of
data and latents p(x , z |θ)

Sleep Phase

Produce dream sample z , x̃ from the joint distribution

Update inference parameters λ to maximize probability of latent state
q(z |x̃ , λ)

Probabll Discrete LVMs 8 / 43

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

Probabll Discrete LVMs 9 / 43

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

Probabll Discrete LVMs 9 / 43

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

λ λ λ λ

Probabll Discrete LVMs 9 / 43

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ

Probabll Discrete LVMs 9 / 43

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ

Probabll Discrete LVMs 9 / 43

• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Update

Compute log p(x , z |θ) and update θ

z3

z1 z2

x1 x2 x3

θ θ θ θ

θ θ

Probabll Discrete LVMs 10 / 43

With the sample z we got from the recognition network we can compute
the joint probability of z and the observation x . This means we do not need
to sample from p(x , z |θ). The alternative to sampling from the recognition
model, would be to fix the observation x and sample from the induced true
posterior p(z |x , θ), which is clearly intractable.

Thus the recognition model plays a role identical to that of the inference
model in variational inference.

As in VI, because we sampled from q(z |x , λ) it is easy to compute a
gradient estimate w.r.t. θ.

The situation is much more difficult w.r.t. λ, as we saw in the section
about NVIL. To circumvent difficulties with gradient estimation for λ, in
Wake-Sleep, we change the optimisation objective in order to update the
recognition model. In particular, we update the recognition model as to
maximise the probability of some ‘dream data’ which we obtain by sampling
from the generative model.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

Probabll Discrete LVMs 11 / 43

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

z1 z2

θ θ

Probabll Discrete LVMs 11 / 43

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

z1 z2

x̃1 x̃2 x̃3

θ θ θ θ

θ θ

Probabll Discrete LVMs 11 / 43

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3

z1 z2

x̃1 x̃2 x̃3

θ θ θ θ

θ θ

Probabll Discrete LVMs 11 / 43

We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Update

Compute log q(z |x̃ , λ) and update λ

z3

z1 z2

x̃1 x̃2 x̃3

λ λ λ λ

λ λ

Probabll Discrete LVMs 12 / 43

The last ingredient is to assess the likelihood of the sampled z given the
sampled x̃ under the recognition model and update λ as to maximise it.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Objective

Objective
arg min

θ
Ex∼D [KL (q(z |x , λ) || p(z |x , θ))]

= arg max
θ

Ex∼D [ELBOx(θ, λ)− log p(x |θ)]

Approximation: optimize the lower-bound alone.

Probabll Discrete LVMs 13 / 43

The wake-phase really is identical to VI. It makes the exact same approx-
imation, namely, that optimising a lowerbound on the log-evidence is a
good idea.

Appendix (optional) Wake-Sleep Algorithm

Wake Phase Objective

Objective
arg max

θ
Ex∼D [ELBOx(θ, λ)]

= arg max
θ

Ex∼D
[
Eq(z|x ,λ) [log p(z , x |θ)] + H[q(z |x , λ)]

]
Gradient wrt θ for x ∼ D (an observation)

∇θEq(z|x ,λ) [log p(z , x |θ)] + ∇θH[q(z |x , λ)]

= Eq(z|x ,λ) [∇θ log p(z , x |θ)]

MC
≈ ∇θ log p(z , x |θ) where z ∼ q(z |x , λ)

Probabll Discrete LVMs 14 / 43

The gradient of the entropy term is 0 and the first term corresponds to
the expected value of a stochastic gradient, thus MC gives us the unbiased
estimate we need for optimisation of the generative model.

In this phase z if fixed to a random draw from q(z |x , λ), from the point
of view of the generative model it is as if z had been observed, so we can
maximise log p(z , x |θ).

This is simply supervised learning with imputed latent data!

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase Objective

Objective
arg max

λ
Ex∼D [ELBOx(θ, λ)]

= arg max
λ

Ex∼D
[
Eq(z|x ,λ) [log p(z , x |θ)] + H[q(z |x , λ)]

]
Gradient wrt λ for x ∼ D (an observation)

∇λEq(z|x ,λ) [log p(z , x |θ)] + ∇λH[q(z |x , λ)]

Let’s change the objective!

Probabll Discrete LVMs 15 / 43

When we turn to the gradient of the recognition model, as expected, things
are not as easy.

Of course we know that we can re-express both gradients (recall that the
entropy term is also an expected value) as expected gradients via the score
function method. That’s not how WS goes about this problem. Instead,
WS changes the objective of optimisation.

This means that for the sleep phase, where we are supposed to learn the
recognition model, we are not going to do VI. This is indeed a pity,
since maximising the ELBO w.r.t. our choice of λ indeed minimises
KL (q(z |x , λ) || p(z |x , θ)).

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.

Appendix (optional) Wake-Sleep Algorithm

Sleep Phase (Convenient) Objective

Assumes fake data x̃ and latent variables z to be fixed random draws from
p(x , z |θ) via

z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

and maximises log q(z |x̃ , λ).

Probabll Discrete LVMs 17 / 43

This is maximum likelihood estimation for the recognition model as if z , x̃
were observed.

Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Algorithm

Advantages

Simple layer-wise updates

Amortised inference: all latent variables are inferred from the same
weights λ

Drawbacks

Inference and generative models are trained on different objectives

Inference weights λ are updated on fake data x̃

Generative weights are bad initially, giving wrong signal to the
updates of λ

Probabll Discrete LVMs 18 / 43

Though there are some instances of WS even in modern literature, its
drawbacks are generally quite serious.

Appendix (optional) Expectation Maximisation

Frequentist VI

Variational Objective

arg max
q(z)

Eq(z) [log p(x , z)] + H (q(z))

This finds us the best posterior approximation for a given model.

Frequentist VI also optimises the model!

arg max
q(z),p(x ,z)

Eq(z) [log p(x , z)] + H (q(z))

Probabll Discrete LVMs 19 / 43

VI comes from the literature of Bayesian modelling, where it is known as
Variational Bayes (VB). VB is concerned with the variational objective,
i.e., ELBO maximisation w.r.t. a choice of posterior approximation q(z).

In Frequentism, we make point estimates of model parameters. Whereas
we can use the ELBO for that it should be noted that we are not opti-
mising log-likelihood, as customary in MLE, rather we are optimising a
lowerbound on it. There’s no guarantee that an improvement in the lower-
bound correlates with an improvement in log-evidence.

Appendix (optional) Expectation Maximisation

Coordinate Ascent Variational Inference

Frequentist VI can be performed via coordinate ascent. This can be done
as a 2-step procedure.

1 Maximise (regularised) expected log-density.

arg max
q(z)

Eq(z) [log p(x , z)] + H (q(z))

2 Optimise generative model.

arg max
p(x ,z)

Eq(z) [log p(x , z)] + H (q(z))︸ ︷︷ ︸
constant

Probabll Discrete LVMs 20 / 43

Think of our choice of approximation q(z) and our choice of model p(x , z)
as coordinates.

We can keep one fixed an update the other. This is coordinate ascent VI.

Appendix (optional) Expectation Maximisation

Unconstrained (exact) optimisation

What’s the solution to the following?

arg max
q(z)∈Q

Eq(z) [log p(x , z)] + H (q(z))

(assume Q is large enough a family)

The true posterior p(z |x)! Exactly because

arg max
q(z)∈Q

ELBO = arg min
q(z)∈Q

KL (q(z) || p(z |x))

and KL is never negative and 0 iff q(z) = p(z |x).

Probabll Discrete LVMs 21 / 43

Appendix (optional) Expectation Maximisation

Unconstrained (exact) optimisation

What’s the solution to the following?

arg max
q(z)∈Q

Eq(z) [log p(x , z)] + H (q(z))

(assume Q is large enough a family)

The true posterior p(z |x)! Exactly because

arg max
q(z)∈Q

ELBO = arg min
q(z)∈Q

KL (q(z) || p(z |x))

and KL is never negative and 0 iff q(z) = p(z |x).

Probabll Discrete LVMs 21 / 43

Appendix (optional) Expectation Maximisation

Recap: EM Algorithm

E-step arg max
q(z)

Eq(z) [log p(x , z)] + H (p(z |x))

= p(z |x)

M-step arg max
p(x ,z)

Ep(z|x) [log p(x , z)] + H (p(z |x))︸ ︷︷ ︸
constant

Probabll Discrete LVMs 22 / 43

Expectation Maximisation (EM) is Frequentist variational inference where
we solve ELBO maximisation w.r.t. q(z) exactly, that is, we use the true
posterior p(z |x).

q(z) = p(z |x)

KL (q(z) || p(z |x)) = 0

The implication is that we can only do EM for models whose marginals are
already tractable (and thus do not require approximate inference).

When we train a discrete LVM with exact marginals via gradient-based
MLE, we solve the marginal exactly (sidestepping the E-step), and the
M-step approximately, via iterative gradient-based ascent.

Appendix (optional) Variance reduction

Score Function Estimator: Variance

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

Empirically this estimator often exhibits high variance.

the magnitude of log p(x |z , θ) varies widely

the model likelihood does not contribute to direction of gradient

Probabll Discrete LVMs 23 / 43

The simplest way to reduce variance of an MC estimator is to sample more
times. But it’s not very efficient.

Appendix (optional) Variance reduction

Control variates

Intuition
To estimate E[f (z)] via Monte Carlo we compute the empirical average of
f̂ (z) where f̂ (z) is chosen so that E[f̂ (z)] = E[f (z)] and Var(f) > Var(f̂).

Probabll Discrete LVMs 24 / 43

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 25 / 43

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 25 / 43

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])

it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 25 / 43

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 25 / 43

Appendix (optional) Variance reduction

Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

Probabll Discrete LVMs 25 / 43

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 26 / 43

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 26 / 43

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0

yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 26 / 43

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 26 / 43

Appendix (optional) Variance reduction

Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂) = Var(f)− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!

Probabll Discrete LVMs 26 / 43

Appendix (optional) Variance reduction

MC

We then use the estimate

f̄
MC
≈ 1

S

(
S∑

s=1

f (z(s))− bc(z(s))

)
+ bc̄

And recall that for us

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and z(s) ∼ q(z |x , λ)

Probabll Discrete LVMs 27 / 43

Appendix (optional) Variance reduction

MC

We then use the estimate

f̄
MC
≈ 1

S

(
S∑

s=1

f (z(s))− bc(z(s))

)
+ bc̄

And recall that for us

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and z(s) ∼ q(z |x , λ)

Probabll Discrete LVMs 27 / 43

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]

=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 28 / 43

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 28 / 43

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 28 / 43

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 28 / 43

Appendix (optional) Variance reduction

Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]
=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0

Probabll Discrete LVMs 28 / 43

Appendix (optional) Variance reduction

Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) =

(log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.

Probabll Discrete LVMs 29 / 43

Appendix (optional) Variance reduction

Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) = (log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.

Probabll Discrete LVMs 29 / 43

Appendix (optional) Variance reduction

Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) = (log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.

Probabll Discrete LVMs 29 / 43

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 30 / 43

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 30 / 43

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 30 / 43

Appendix (optional) Variance reduction

Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)

Probabll Discrete LVMs 30 / 43

Appendix (optional) Variance reduction

Trainable baselines

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L2-loss.

min
ω

(b(x ;ω)− log p(x |z , θ))2

Probabll Discrete LVMs 31 / 43

Appendix (optional) Variance reduction

Summary

In practice the score function estimator leads to high variance
gradient estimates.

We can design control variates that reduce estimator variance, yet do
not bias the estimator!

Probabll Discrete LVMs 32 / 43

Appendix (optional) Variance reduction

References I

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural
predictions with differentiable binary variables. In Proceedings of the
57th annual meeting of the association for computational linguistics,
pages 2963–2977, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1284. URL
https://www.aclweb.org/anthology/P19-1284.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
Allocation. J. Mach. Learn. Res., 3:993–1022, 2003. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=944919.944937.
Publisher: JMLR.org.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference:
A review for statisticians. Journal of the American statistical
Association, 112(518):859–877, 2017. Publisher: Taylor & Francis.

Probabll Discrete LVMs 33 / 43

https://www.aclweb.org/anthology/P19-1284
http://dl.acm.org/citation.cfm?id=944919.944937

Appendix (optional) Variance reduction

References II

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
Robert L. Mercer. The Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguistics, 19(2):263–311, 1993.
URL https://www.aclweb.org/anthology/J93-2003.

Zoubin Ghahramani and Thomas L. Griffiths. Infinite latent feature models
and the Indian buffet process. In Y. Weiss, B. Schölkopf, and J. C.
Platt, editors, Advances in Neural Information Processing Systems 18,
pages 475–482. MIT Press, 2006.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David
Duvenaud. Backpropagation through the Void: Optimizing control
variates for black-box gradient estimation. In International Conference
on Learning Representations, 2018. URL
https://openreview.net/forum?id=SyzKd1bCW.

Probabll Discrete LVMs 34 / 43

https://www.aclweb.org/anthology/J93-2003
https://openreview.net/forum?id=SyzKd1bCW

Appendix (optional) Variance reduction

References III

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance
Reduction Techniques for Gradient Estimates in Reinforcement
Learning. Journal of Machine Learning Research, 5(Nov):1471–1530,
2004. ISSN ISSN 1533-7928. URL
https://www.jmlr.org/papers/v5/greensmith04a.html.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp:
Unbiased backpropagation for stochastic neural networks. In ICLR
(poster), 2016. URL http://arxiv.org/abs/1511.05176. tex.cdate:
1451606400000 tex.crossref: conf/iclr/2016.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The Wake-Sleep
Algorithm for Unsupervised Neural Networks. Science, 268:1158–1161,
1995.

Probabll Discrete LVMs 35 / 43

https://www.jmlr.org/papers/v5/greensmith04a.html
http://arxiv.org/abs/1511.05176

Appendix (optional) Variance reduction

References IV

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An Introduction to Variational Methods for Graphical
Models. Machine Learning, 37(2):183–233, November 1999. ISSN
1573-0565. doi: 10.1023/A:1007665907178. URL
https://doi.org/10.1023/A:1007665907178.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. Semi-supervised Learning with Deep Generative Models. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 3581–3589. Curran Associates, Inc., 2014.

Probabll Discrete LVMs 36 / 43

https://doi.org/10.1023/A:1007665907178

Appendix (optional) Variance reduction

References V

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing Neural
Predictions. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 107–117, Austin,
Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1011. URL
https://www.aclweb.org/anthology/D16-1011.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael Jordan, and Jon
Mcauliffe. Rao-blackwellized stochastic gradients for discrete
distributions. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
ICML, volume 97 of Proceedings of machine learning research, pages
4023–4031, Long Beach, California, USA, June 2019. PMLR. URL
http://proceedings.mlr.press/v97/liu19c.html. tex.pdf:
http://proceedings.mlr.press/v97/liu19c/liu19c.pdf.

Probabll Discrete LVMs 37 / 43

https://www.aclweb.org/anthology/D16-1011
http://proceedings.mlr.press/v97/liu19c.html

Appendix (optional) Variance reduction

References VI

Thomas P. Minka. Expectation propagation for approximate bayesian
inference. In Proceedings of the seventeenth conference on uncertainty
in artificial intelligence, UAI’01, pages 362–369, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-1.
Number of pages: 8 Place: Seattle, Washington.

Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning
in Belief Networks. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, ICML’14,
pages II–1791–II–1799. JMLR.org, 2014. event-place: Beijing, China.

Andriy Mnih and Danilo Rezende. Variational inference for monte carlo
objectives. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
ICML, volume 48 of Proceedings of machine learning research, pages
2188–2196, New York, New York, USA, June 2016. PMLR. URL
http://proceedings.mlr.press/v48/mnihb16.html. tex.pdf:
http://proceedings.mlr.press/v48/mnihb16.pdf.

Probabll Discrete LVMs 38 / 43

http://proceedings.mlr.press/v48/mnihb16.html

Appendix (optional) Variance reduction

References VII

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih.
Monte Carlo Gradient Estimation in Machine Learning. CoRR,
abs/1906.10652, 2019. URL http://arxiv.org/abs/1906.10652.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational
Inference. In Samuel Kaski and Jukka Corander, editors, Proceedings of
the Seventeenth International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning Research,
pages 814–822, Reykjavik, Iceland, April 2014. PMLR. URL
http://proceedings.mlr.press/v33/ranganath14.html.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and
Vaibhava Goel. Self-Critical Sequence Training for Image Captioning. In
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1179–1195.
IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.131. URL
https://doi.org/10.1109/CVPR.2017.131.

Probabll Discrete LVMs 39 / 43

http://arxiv.org/abs/1906.10652
http://proceedings.mlr.press/v33/ranganath14.html
https://doi.org/10.1109/CVPR.2017.131

Appendix (optional) Variance reduction

References VIII

Miguel Rios, Wilker Aziz, and Khalil Sima’an. Deep Generative Model for
Joint Alignment and Word Representation. In Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 1011–1023, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-1092.
URL https://www.aclweb.org/anthology/N18-1092.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel.
Gradient estimation using stochastic computation graphs. In Advances
in neural information processing systems, pages 3528–3536, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. CoRR,
abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Probabll Discrete LVMs 40 / 43

https://www.aclweb.org/anthology/N18-1092
http://arxiv.org/abs/1707.06347

Appendix (optional) Variance reduction

References IX

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha
Sohl-Dickstein. REBAR: Low-variance, unbiased gradient estimates for
discrete latent variable models. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages
2627–2636. Curran Associates, Inc., 2017.

Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran,
Swupnil Sahai, Paul Blomstedt, John P Cunningham, David
Schiminovich, and Christian P Robert. Expectation propagation as a
way of life: A framework for bayesian inference on partitioned data.
Journal of Machine Learning Research, 21(17):1–53, 2020.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-Based word
alignment in statistical translation. In COLING 1996 volume 2: The
16th international conference on computational linguistics, 1996. URL
https://www.aclweb.org/anthology/C96-2141.

Probabll Discrete LVMs 41 / 43

https://www.aclweb.org/anthology/C96-2141

Appendix (optional) Variance reduction

References X

Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan Gan, and Hermann
Ney. Neural Hidden Markov Model for Machine Translation. In
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 377–382,
Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-2060. URL
https://www.aclweb.org/anthology/P18-2060.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning, 8(3-4):
229–256, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696.

Probabll Discrete LVMs 42 / 43

https://www.aclweb.org/anthology/P18-2060
https://doi.org/10.1007/BF00992696

Appendix (optional) Variance reduction

References XI

Chunting Zhou and Graham Neubig. Multi-space variational
encoder-decoders for semi-supervised labeled sequence transduction. In
Proceedings of the 55th annual meeting of the association for
computational linguistics (volume 1: Long papers), pages 310–320,
Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1029. URL
https://www.aclweb.org/anthology/P17-1029.

Probabll Discrete LVMs 43 / 43

https://www.aclweb.org/anthology/P17-1029

	Appendix (optional)
	Implicit distributions
	KL divergence
	Choosing Distributions
	Wake-Sleep Algorithm
	Expectation Maximisation
	Variance reduction

	References

