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Appendix (optional) Implicit distributions

Implicit distributions

We can specify a stochastic map by using a (deterministic) NN and a
source of random numbers with probability density function s(ε). For each
(x , ε) the mapping is deterministic, but the noise source induces a random
variable Y |θ, x . The implicit likelihood assigned to an outcome y given x
is p(y |x , θ) =

∫
{ε:f (x ,ε;θ)=y} s(ε)dε.

In words, we must ‘integrate the density of the noise source for every
possible way you can map x to y .‘
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Appendix (optional) KL divergence

KL divergence

The Kullback-Leibler divergence (or relative entropy) measures the
divergence of a distribution q from a distribution p.

KL (q(z) || p(z)) = Eq(z)

[
log q(z)

p(z)

]
KL (q(z) || p(z)) =

∫
q(z) log q(z)

p(z)dz (continuous)

KL (q(z) || p(z)) =
∑

z q(z) log q(z)
p(z) (discrete)
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Appendix (optional) KL divergence

KL divergence - Properties

Properties

KL (q(z) || p(z)) ≥ 0 with
equality iff q(z) = p(z).

−KL (q(z) || p(z)) = Eq(z)

[
log p(z)

q(z)

]
≤ 0.

We want: supp(q) ⊆ supp(p); otherwise KL (q(z) || p(z)) =∞
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Appendix (optional) Wake-Sleep Algorithm

Wake-Sleep Algorithm

Generalise latent variables to neural networks.

Train generative neural model.

Use variational inference! (kind of)

Hinton et al. (1995)
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Appendix (optional) Wake-Sleep Algorithm

Wake-Sleep Architecture

2 neural networks:

A generation network to model the data (the one we want to
optimise) – parameters: θ

An inference (recognition) network (to model the latent variable) –
parameters: λ

Original setting: binary hidden units

Training is performed in a “hard EM” fashion
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Appendix (optional) Wake-Sleep Algorithm

Generator

z3

z1 z2

x1 x2 x3

θ θ θ θ

θ θ
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The ‘generator’ in wake-sleep is a generative model parameterised by NNs.
In the original paper they had an NN with stochastic binary hidden units.

For example, this NN has 3 layers:

• The top one parameterises a distribution over 1 binary random
variable, i.e., Z3|θ0 ∼ Bern(f (3)(θ3)).

• The middle one conditions on a sampled z3 and parameterises a
distribution over 2 binary random variables, i.e.,

Zd |θ,Z = z3 ∼ Bern(f
(2)
d (z3; θ2)) for d = 1, 2.

• The bottom one conditions on sampled 〈z1, z2〉 and parameterises a
distribution over 3 observed random variables. For example, if x is a
document we might make an independence assumption:
Xi |θ,Z1 = z1,Z2 = z2 ∼ Cat(f (1)(z1, z2; θ1)).

The true posterior is clearly intractable, it takes assessing p(x |θ) =∑
z∈Z p(x , z |θ) and Z is the space of all possible configuration of binary

assignments.

I omit arrows from z2 to x1 and from z1 to x3 to keep the drawing cleaner.
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Recognition Network

z3

z1 z2

x1 x2 x3

λ λ λ λ

λ λ
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The recognition network is much like our inference models. It predicts
a distribution over Z1,Z2,Z3 given x using an independent model with
parameters λ.

This is an NN that predicts as many rvs as there are latent variables in the
original model. Think of it as a conditional model of the latent variable.

• We condition on x and parameterise a distribution over two binary
random variables, i.e.: Zd |λ, x ∼ Bern(g (1)(x ;λ1)) for d = 1, 2.

• We then condition on sampled 〈z1, z2〉 and parameterise a
distribution over one binary random variable
Z3|λz1, z2 ∼ Bern(g (2)(z1, z2;λ2))

The recognition network specifies an approximate posterior distribution

which assumes layer-wise independence, that is, Z
(`)
d in a layer ` is inde-

pendent on all but the latent variables in the layer below.

I omit arrows from x2 to z2 and from x3 to z1 to keep the drawing cleaner.



Appendix (optional) Wake-Sleep Algorithm

Wake-sleep Training

Wake Phase

Use inference network to sample hidden unit setting z from q(z |x , λ)

Update generation parameters θ to maximize joint log-likelihood of
data and latents p(x , z |θ)

Sleep Phase

Produce dream sample z , x̃ from the joint distribution

Update inference parameters λ to maximize probability of latent state
q(z |x̃ , λ)
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Wake Phase Sampling

Sampling z ∼ q(z |x , λ)

z3

z1 z2

x1 x2 x3
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• Observe x

• Parameterise distributions Zd |θ,X = x and sample latent variables
z1, z2

• Condition on z1, z2, parameterise distribution Z3|θ,Z1 = z1,Z2 = z2
and sample latent variable z3.
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Wake Phase Update

Compute log p(x , z |θ) and update θ

z3

z1 z2

x1 x2 x3

θ θ θ θ

θ θ
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With the sample z we got from the recognition network we can compute
the joint probability of z and the observation x . This means we do not need
to sample from p(x , z |θ). The alternative to sampling from the recognition
model, would be to fix the observation x and sample from the induced true
posterior p(z |x , θ), which is clearly intractable.

Thus the recognition model plays a role identical to that of the inference
model in variational inference.

As in VI, because we sampled from q(z |x , λ) it is easy to compute a
gradient estimate w.r.t. θ.

The situation is much more difficult w.r.t. λ, as we saw in the section
about NVIL. To circumvent difficulties with gradient estimation for λ, in
Wake-Sleep, we change the optimisation objective in order to update the
recognition model. In particular, we update the recognition model as to
maximise the probability of some ‘dream data’ which we obtain by sampling
from the generative model.
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Sleep Phase Sampling

Sampling (z , x̃) ∼ p(x , z |θ)

z3
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We do a stochastic forward pass through the generative model sampling
our random variables.

• We sample z3 from the distribution at the top layer.

• Then condition on z3 to parameterise the distribution
Z1,Z2|θ,Z3 = z3, from which we sample z1 and z2.

• We condition on z1 and z2 to parameterise our output distributions
over data space Xi |θ,Z1 = z1,Z2 = z2, from where we sample data.
This is crucial, our sample x̃ is not an actual observation (we mark
it with tilde to help you track its influence).
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Sleep Phase Update

Compute log q(z |x̃ , λ) and update λ

z3

z1 z2

x̃1 x̃2 x̃3

λ λ λ λ

λ λ

Probabll Discrete LVMs 12 / 43

The last ingredient is to assess the likelihood of the sampled z given the
sampled x̃ under the recognition model and update λ as to maximise it.
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Wake Phase Objective

Objective
arg min

θ
Ex∼D [KL (q(z |x , λ) || p(z |x , θ))]

= arg max
θ

Ex∼D [ELBOx(θ, λ)− log p(x |θ)]

Approximation: optimize the lower-bound alone.
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The wake-phase really is identical to VI. It makes the exact same approx-
imation, namely, that optimising a lowerbound on the log-evidence is a
good idea.
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Wake Phase Objective

Objective
arg max

θ
Ex∼D [ELBOx(θ, λ)]

= arg max
θ

Ex∼D
[
Eq(z|x ,λ) [log p(z , x |θ)] + H[q(z |x , λ)]

]
Gradient wrt θ for x ∼ D (an observation)

∇θEq(z|x ,λ) [log p(z , x |θ)] + ∇θH[q(z |x , λ)]

= Eq(z|x ,λ) [∇θ log p(z , x |θ)]

MC
≈ ∇θ log p(z , x |θ) where z ∼ q(z |x , λ)
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The gradient of the entropy term is 0 and the first term corresponds to
the expected value of a stochastic gradient, thus MC gives us the unbiased
estimate we need for optimisation of the generative model.

In this phase z if fixed to a random draw from q(z |x , λ), from the point
of view of the generative model it is as if z had been observed, so we can
maximise log p(z , x |θ).

This is simply supervised learning with imputed latent data!
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Sleep Phase Objective

Objective
arg max

λ
Ex∼D [ELBOx(θ, λ)]

= arg max
λ

Ex∼D
[
Eq(z|x ,λ) [log p(z , x |θ)] + H[q(z |x , λ)]

]
Gradient wrt λ for x ∼ D (an observation)

∇λEq(z|x ,λ) [log p(z , x |θ)] + ∇λH[q(z |x , λ)]

Let’s change the objective!
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When we turn to the gradient of the recognition model, as expected, things
are not as easy.

Of course we know that we can re-express both gradients (recall that the
entropy term is also an expected value) as expected gradients via the score
function method. That’s not how WS goes about this problem. Instead,
WS changes the objective of optimisation.

This means that for the sleep phase, where we are supposed to learn the
recognition model, we are not going to do VI. This is indeed a pity,
since maximising the ELBO w.r.t. our choice of λ indeed minimises
KL (q(z |x , λ) || p(z |x , θ)).
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Sleep Phase (Convenient) Objective

Flip the direction of the KL

arg min
λ

Ex∼D [KL (p(z |x , θ) || q(z |x , λ))]

= arg min
λ

Ex∼DEp(z|x,θ) [log p(z |x , θ)− log q(z |x , λ)]

asm
= arg max

λ
Ep(x,z|θ) [log q(z |x , λ)]− Ep(x,z|θ) [log p(z |x , θ)]︸ ︷︷ ︸

constant

Gradient wrt λ

∇λEp(x ,z|θ) [log q(z |x , λ)]

= Ep(x ,z|θ) [∇λ log q(z |x , λ)]

MC
≈ ∇λ log q(z |x̃ , λ) where z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

Probabll Discrete LVMs 16 / 43

The strategy for the sleep phase is to flip the KL around, that is, to assess
the KL divergence of p(z |x , θ) from q(z |x , λ).

• See that this change is in some sense convenient. Assume we are
able to sample from the true posterior, then we can get gradient
estimates w.r.t. λ. Clearly this is only superficially simple, as we
have no means to sample from the true posterior.

• Here is where WS makes a big assumption, it assumes that
sampling from the data x ∼ D is equivalent to sampling from the
marginal of the model x ∼ p(x |θ), this can only be true if our
model perfectly reproduces the data generating process. This is very
unlikely in general, since the data generating process is unknown to
us, and it’s particularly unlikely at the beginning of training.

• With this assumption in place, it’s easy to express the gradient as
an expected gradient.

• An MC estimation is possible by ancestral sampling from p(x , z |θ).
This gives us a dream (model-generated) observation.
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Sleep Phase (Convenient) Objective

Assumes fake data x̃ and latent variables z to be fixed random draws from
p(x , z |θ) via

z ∼ p(z |θ)

x̃ ∼ p(x |z , θ)

and maximises log q(z |x̃ , λ).
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This is maximum likelihood estimation for the recognition model as if z , x̃
were observed.
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Wake-sleep Algorithm

Advantages

Simple layer-wise updates

Amortised inference: all latent variables are inferred from the same
weights λ

Drawbacks

Inference and generative models are trained on different objectives

Inference weights λ are updated on fake data x̃

Generative weights are bad initially, giving wrong signal to the
updates of λ
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Though there are some instances of WS even in modern literature, its
drawbacks are generally quite serious.
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Frequentist VI

Variational Objective

arg max
q(z)

Eq(z) [log p(x , z)] + H (q(z))

This finds us the best posterior approximation for a given model.

Frequentist VI also optimises the model!

arg max
q(z),p(x ,z)

Eq(z) [log p(x , z)] + H (q(z))
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VI comes from the literature of Bayesian modelling, where it is known as
Variational Bayes (VB). VB is concerned with the variational objective,
i.e., ELBO maximisation w.r.t. a choice of posterior approximation q(z).

In Frequentism, we make point estimates of model parameters. Whereas
we can use the ELBO for that it should be noted that we are not opti-
mising log-likelihood, as customary in MLE, rather we are optimising a
lowerbound on it. There’s no guarantee that an improvement in the lower-
bound correlates with an improvement in log-evidence.
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Coordinate Ascent Variational Inference

Frequentist VI can be performed via coordinate ascent. This can be done
as a 2-step procedure.

1 Maximise (regularised) expected log-density.

arg max
q(z)

Eq(z) [log p(x , z)] + H (q(z))

2 Optimise generative model.

arg max
p(x ,z)

Eq(z) [log p(x , z)] + H (q(z))︸ ︷︷ ︸
constant
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Think of our choice of approximation q(z) and our choice of model p(x , z)
as coordinates.

We can keep one fixed an update the other. This is coordinate ascent VI.
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Unconstrained (exact) optimisation

What’s the solution to the following?

arg max
q(z)∈Q

Eq(z) [log p(x , z)] + H (q(z))

(assume Q is large enough a family)

The true posterior p(z |x)! Exactly because

arg max
q(z)∈Q

ELBO = arg min
q(z)∈Q

KL (q(z) || p(z |x))

and KL is never negative and 0 iff q(z) = p(z |x).
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Recap: EM Algorithm

E-step arg max
q(z)

Eq(z) [log p(x , z)] + H (p(z |x))

= p(z |x)

M-step arg max
p(x ,z)

Ep(z|x) [log p(x , z)] + H (p(z |x))︸ ︷︷ ︸
constant
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Expectation Maximisation (EM) is Frequentist variational inference where
we solve ELBO maximisation w.r.t. q(z) exactly, that is, we use the true
posterior p(z |x).

q(z) = p(z |x)

KL (q(z) || p(z |x)) = 0

The implication is that we can only do EM for models whose marginals are
already tractable (and thus do not require approximate inference).

When we train a discrete LVM with exact marginals via gradient-based
MLE, we solve the marginal exactly (sidestepping the E-step), and the
M-step approximately, via iterative gradient-based ascent.
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Score Function Estimator: Variance

∂

∂λ
Eq(z|x,λ) [log p(x |z , θ)] = Eq(z|x,λ)

[
log p(x |z , θ)

∂

∂λ
log q(z |x , λ)

]

Empirically this estimator often exhibits high variance.

the magnitude of log p(x |z , θ) varies widely

the model likelihood does not contribute to direction of gradient
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The simplest way to reduce variance of an MC estimator is to sample more
times. But it’s not very efficient.
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Control variates

Intuition
To estimate E[f (z)] via Monte Carlo we compute the empirical average of
f̂ (z) where f̂ (z) is chosen so that E[f̂ (z)] = E[f (z)] and Var(f ) > Var(f̂ ).
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Equivalent expectations

Let f̄ = E[f (z)] be an expectation of interest

say we know c̄ = E[c(z)]

then for f̂ (z) , f (z)− b(c(z)− E[c(z)])
it holds that E[f̂ (z)] = E[f (z)]

and Var(f̂ ) = Var(f )− 2b Cov(f , c) + b2 Var(c)
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Choosing the control variate

1 f̂ (z) , f (z)− b(c(z)− E[c(z)])

2 Var(f̂ ) = Var(f )− 2b Cov(f , c) + b2 Var(c)

How do we choose b and c(z)?

If f (z) and c(z) are positively correlated, then we may reduce variance

solving ∂
∂b Var(f̂ ) = 0 yields b? = Cov(f , c)/Var(c)

Of course, E[c(z)] must be known!
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MC

We then use the estimate

f̄
MC
≈ 1

S

(
S∑

s=1

f (z(s))− bc(z(s))

)
+ bc̄

And recall that for us

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and z(s) ∼ q(z |x , λ)
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Expected score

The Expectation of the score function is 0.

Eq(z|x ,λ)

[
∂

∂λ
log q(z |x , λ)

]

=

∫
q(z |x , λ)

∂

∂λ
log q(z |x , λ)dz

=

∫
∂

∂λ
q(z |x , λ)dz

=
∂

∂λ

∫
q(z |x , λ)dz

=
∂

∂λ
1 = 0
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Baselines

With

f (z) = log p(x |z , θ)
∂

∂λ
log q(z |x , λ)

and

c(z) =
∂

∂λ
log q(z |x , λ)

we have

f̂ (z) =

(log p(x |z , θ)− b)
∂

∂λ
log q(z |x , λ)

b is known as baseline in RL literature.
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Examples of baselines

Moving average of log p(x |z , θ)
based on previous batches

A trainable constant b

A neural network prediction based on x
e.g. b(x ;ω)

The likelihood assessed at a deterministic point, e.g.
b(x) = log p(x |z?, θ) where z? = arg maxz q(z |x , λ)
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Trainable baselines

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L2-loss.

min
ω

(b(x ;ω)− log p(x |z , θ))2
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Summary

In practice the score function estimator leads to high variance
gradient estimates.

We can design control variates that reduce estimator variance, yet do
not bias the estimator!
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