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Overview

Overview

In DL4NLP you learn about

a representative sample of NLP problems

various NN architectures and how they power selected NLP
applications

tricks of the trade necessary to get DL4NLP off the ground

and also how to go beyond the designs and applications we cover in
the course

To help with the last point, in this part of the course we will revisit the
way we see, specify, and talk about DL models to put them under the lens
of the probabilistic modelling framework.
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We will use a bit of the language developed to talk about probabilistic
graphical models. If you would like to learn all about PGMs, check the
excellent book by Koller and Friedman (2009). I’d recommend Part I (on
representation of distributions) to anyone working with machine learning.
You can safely skip all proofs in the book, if you are not interested in that
kind of thing.



Overview

Probabilistic models

A probabilistic model predicts possible outcomes of a random experiment.

Most modern ML models, including DL models, are probabilistic.

DL4NLP is no exception, but DL literature often emphasises
implementation and algorithmic aspects over statistical considerations
about the data and the model.

This part of the course is meant to bring statistics back to the fore as
doing so allows us to

talk about models in greater generality

extend existing models in interesting ways

go far beyond the examples we will cover in the course
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DL, as any field, has developed a highly specialised language to talk about
its important concepts and ideas. Though it’s only expected that a com-
munity optimises its means of communicating ideas, a warning is due.
More often than not this language conflates ideas pertinent to different
aspects of a complete ML solution such as statistical dependence, parame-
terisation, statistical inference, parameter estimation, decision making, as
well as algorithmic tricks and popular design choices. It also often makes
DL-specific use of terms that have been previously established in other
contexts (such as ML more generally or statistics), which can be confusing
depending on where you approach DL from.



Overview

On DL language

In DL we typically talk about models in terms of their implementation.
This causes us to conflate the statistical model, its parameterisation,
statistical inference, parameter estimation, decision making, and even
tricks of the trade (‘empirical common wisdom’).

Example (NMT): we use a BiLSTM encoder, and an attention-based
LSTM decoder with input feeding, at each time step the model is trained
to predict the next target word with teacher forcing, the model is trained
to minimize the categorical cross entropy loss.

We will learn to disentangle the different ingredients mentioned in the
example. In times, this will require distancing ourselves from DL design
and practice.
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MT data consist of pairs of sentences that convey the same ideas but are
expressed in different languages. The source language is the language we
want to translate from, the target language is the language we want to
translate into.

A BiLSTM encoder is a combination of two LSTMs they process the same
source sentence, but in opposite order. An attention-based decoder is
an LSTM that processes the target sentence one token at a time while
conditioning on the outputs of the encoder. As the encoder exposes a
variable number of hidden states, the decoder uses a weighted average of
encoder states with weights specific to each time step. The coefficients
of this average are predicted by the so called attention mechanism. Input
feeding is a very specific way to “wire” the encoder, decoder, and attention
mechanism named as such by Luong et al. (2015). Teacher forcing is
when NNs condition on inputs sampled from the data (gold-standard)
rather than sampled from the model itself.

This description also suggests that NNs learn by predicting data, this is
seldom the case. More often than not, NNs learn by assigning probability
to observed data. Such NNs predict probability values (not data).
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On DL design and practice

Implementation aspects are important for obvious reasons: ultimately one
has to implement a model that works! This requires being concrete about

the design of NN architecture blocks (e.g., encoder, decoder)

how to wire blocks together (e.g., residual connections)

how to train the model (e.g., objective, curriculum, optimiser)

and how to make predictions (e.g., beam search, sampling).

Example I: LSTMs are superior to vanilla RNNs for they address numerical
problems with repeated application of the chain rule of derivatives. That said,
from a statistical standpoint, LSTMs and vanilla RNNs play interchangeable roles
(i.e., allow to condition on a sequence of arbitrary length).

Example II: Dropout addresses overfitting in FFNNs, but leads to catastrophic

forgetting in recurrent models. From a probabilistic perspective, we can explain

why dropout works and how to ‘fix it’ to support the recurrent case.
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For certain (statistical) arguments it is irrelevant whether we employ RNNs,
LSTMs, GRUs, RCNNs, or certain instances of the Transformer.

Though note the point is not a dismissive one and when it comes to
implementation of a certain model decisions of this kind certainly matter.

For example, these architectures are all quite different in their design,
some are smaller, some are rather big, some are more parallelisable, some
less, etc. Training them effectively is usually non-trivial, often requiring
awareness of a number of empirically-validated recipes.

The point is one of zooming in and zooming out depending on our goals.

Dropout (Srivastava et al., 2014) is a technique where we randomly set
some inputs of a layer to 0. A special type of approximations to a Bayesian
model corresponds very closely to dropout (Gal and Ghahramani, 2016b)
and leads to extensions to more complex architecture blocks (Gal and
Ghahramani, 2016a,c).
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Beyond DL design and practice

Many architectural differences have little statistical substance and
abstracting away from them helps us concentrate on issues that are
statistical in nature.

Statistical considerations concern the specification of joint distributions

Are there conditional independences that should or should not hold?

Are the distributions (and their marginals) complex enough?

Can they capture enough modes?
Do they underestimate variance of data by design?

These considerations become more and more prominent where we lack
supervision for some aspects of our problem, as we shall see.

Probabll Introduction 5 / 45

Example (graph networks):

In GNs, a node encoding is updated by composing a transformation of
messages from its neighbouring nodes in a graph. A message is just a
vector of scalars, and composition is usually done via weighted average
(attention) with learned/predicted coefficients. The coefficients of this
average may be independently normalised to 1 (via sigmoid) or jointly
normalised to 1 (via softmax). Note that, with K neighbours, sigmoid
attention coefficients add to at most K while softmax attention coefficients
always add to 1.

Which activation will work best in an application is not a matter of statis-
tics, valid arguments may concern numerical stability, the nature of the
problem and inductive biases inherent to the activation (e.g., does node
connectivity vary widely through the graph?).
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Beyond DL design and practice - Example

Have you ever wondered why we have some pre-determined pairings of
output activation and loss function that just go well together?

Understanding the statistical model we are specifying (i.e., being conscious
about the choices we make) will make these pairings rather obvious to us.

We will also learn to move beyond the list of pairs you’ve come across, we
will be able to create our own (even fairly non-trivial) pairs.

We will see that different losses are different implementations of the same
basic principles but under different modelling choices.
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In the frequentist case, this is the likelihood principle, which will motivate
several algorithms for parameter estimation, the most popular algorithms
you know are likely in this class.

In the Bayesian case, which we discuss later in the course, this basic prin-
ciple is nothing but probabilistic inference which allows us to update our
beliefs about hypotheses as more information becomes available.
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Modelling Random Experiments

Modelling random experiments

We are now primarily interested in data (as opposed to tasks).

Think of a task as a potential application of a probabilistic model.

Think of the data as the main subject of statistical interest.

Think of the model as an attempt to shed light onto properties of
data (or our own understanding of such properties).

Data are the outcomes of experiments involving random variables.
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We are no longer modelling tasks. We are modelling random experiments.
We will de-emphasise the intended use of the model (the downstream task)
and emphasise the job of the designer (the statistical task).
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Modelling observed random variables

Our goal is to learn a distribution over a set of observed random variables.

Observed random variables are the result of random experiments that have
already happened: e.g., sentences in a collection of news articles, number
of stars in a product review.

Typical use in ML: conditional models.
B We are given some variables, call them inputs (for now), and we are
interested in making predictions about other variables, outputs (for now)

such inputs are also called predictors (or covariates)

with some probability, predicted by the model, an output takes on a
certain outcome in a sample space

More often than not our goal is to predict output values for future inputs.
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Think about this for a second. There’s at least one aspect of a model that
cannot possibly be observed. Thus saying that a lot of ML is about joint
distributions over observed random variables only means we are adopting
a particular view of statistics. What might that view be? And what would
the alternative be?

Is there any case where predicting the future is not the goal in ML? How
about in NLP specifically?
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Modelling Random Experiments

Modelling conditionally - Examples

Predictor Outcome Sample space

Why did they bother record-
ing this???

? {?, ??, ? ? ?, ? ? ??, ? ? ? ? ?}

Source: geen standaard compare(‘no step’)=0.5 [0, 1]
MT: no standard

he proposed a famous solu-
tion to an inverse probability
problem in the 18th century

https://en.wikipedia.

org/wiki/Thomas_Bayes

Wen

Pepper loves the beach! Σ∗
en

That’s not possible! Dat is niet mogelijk! Σ∗
nl
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Here we have some observations, inputs variables and output variables. A probabilistic
model of the output variables conditioned on the input variables is a procedure that
specifies a probability distribution over the sample space of the observed output variable.

The first example shows an instance of text classification. The model uses a piece of
text to predict a discrete distribution over 5 outcomes. As a task, the goal might be to
decide how many stars a new record deserves.

The second example is an instance of MT quality estimation. The model uses a source
sentence and its machine translation to predict a distribution over a continuous interval
of quality scores. As a task, the goal might be to decide whether the translation is good
enough for publication or requires post-editing (this might be based on a threshold or
some other rule).

The third example is an instance of question answering. The model uses a passage of
text to predict a distribution over Wikipedia pages. As a task, the goal might be to
spot the entity that the passage most likely refers to.

The fourth example is an instance of image captioning. The model uses an image to
predict a distribution over English sentences. As a task, we might want to describe
images to the visually impaired.

The last example is an instance of translation. The model uses an English sentence to

predict a distribution over Dutch sentences. As a task, we might be interested in giving

users on the web quick access to translated search results. In the last two examples,

the sample space is discrete and unbounded.

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes


Modelling Random Experiments

To model or not to model?

Oftentimes, a model sees some observations as deterministic predictors.
These are never modelled, they are only conditioned on:

if a variable is not modelled, our statistical model cannot assign a
probability to any observed value of that variable nor generate
random draws for that variable

the variable can, however, be used in some calculation

Example: a review in a sentiment classifier

some NN “reads it” to compute a probability distribution over
sentiment levels (e.g., negative, neutral, positive)

the model has no clue how reviews come about, it is only concerned
with reading them, not modelling their generative process
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Deterministic predictors are usually the kinds of input we talk about when
we mean ‘inputs at test time’ (e.g., the source sentence in MT).

An example of stochastic predictor is the prefix of already generated words
in a partial translation. The model can assign probability to those (for
example, in training), and it might even have generated those (for example,
in test). Once those outcomes are already in place, they act as predictors
so we can continue translating.



Modelling Random Experiments

What if we model all observations?

That is, including the predictors. Then we get joint or generative models.

Think of these models as models that can generate their own predictors
with some probability.

All previous examples can be modelled generatively.
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In some contexts, especially classification and regression, conditional mod-
els are called discriminative models.

Generative models are sometimes also called joint models.

Don’t get too caught up with the generative vs discriminative debate.
Again, different points of view will lead to different uses of these labels.
Some people will read ’discriminative’ as something about the training
algorithm, others as something about the nature of the distribution, others
just appeal to analogies or traditions, there are also cases where things get
tricky because of other disciplines (e.g., generative syntax in linguistics has
nothing to do with statistics, though generative syntactic formalisms can
be given statistical treatment, including via discriminative models).



Modelling Random Experiments

Joint modelling - Examples

Joint outcome Sample space

Why did they bother record-
ing this???

? Σ∗
en×{?, ??, ???, ????, ?????}

Source: geen standaard compare(‘no step’)=0.5 Σ∗
nl × Σ∗

en × [0, 1]
MT: no standard

he proposed a famous solu-
tion to an inverse probability
problem in the 18th century

https://en.wikipedia.

org/wiki/Thomas_Bayes

Σ∗
en ×Wen

Pepper loves the beach! [256, 256, 256]h×w × Σ∗
en

That’s not possible! Dat is niet mogelijk! Σ∗
en × Σ∗

nl
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The statistical model predicts a distribution over the sample space. Sam-
ple spaces can grow rather large, especially so when former deterministic
predictors are to be treated as random variables (that is, they are now part
of the random experiment we aim to predict).

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes


Modelling Random Experiments

Modelling unobserved random variables

Unobserved random variables are variables that are

observable in principle, but for some reason are not available for
observation (e.g., the topic of a piece of text, a binary bracketing tree)

unobservable (e.g., a 100-dimensional continuous representation of a
sentence, the collection of continuous parameters of a FFNN)

they help us prescribe and even estimate our models.

Our goal is to learn a distribution over observed and unobserved rvs

make explicit assumptions about statistical dependence

discover hidden structure (i.e., statistical dependence)

mimic intuitions or knowledge about the data generating process

deal with missing data

estimate uncertainty about predictions

Deterministic predictors may also be available.
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Unobserved random variables are also called latent variables.

For those interested in Bayesian statistics, note that the presence of un-
observed random variables does not imply Bayesian modelling. Bayesian
principles are a collection of ideas organised in what is called the Bayesian
Theory (or Bayesian Decision Theory) for rational decision making under
uncertainty (Bernardo and Smith, 2009). These ideas may cross paths
with many aspects of our ML solutions.

Having latent variables is nothing but a design choice. Indeed embracing
Bayesian principles calls for recognising at least some inherently unobserv-
able variables (such as parameters in a parametric model, functions in
non-parametric models, and sometimes even the model structure itself)
and making inferences by application of probability calculus.

We will discuss models with latent variables and approach them both via
Frequentist estimation and via approximations to Bayesian inference.
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What are the benefits of probabilistic models?

Probabilistic models allows to incorporate assumptions through

the choice of distribution

dependencies among random variables

the way that distributions uses side information

stipulate unobserved data and their properties

They return a distribution over outcomes which can be used to

generate data

account for unobserved data

provide explanation and suggest improvements

inform decision makers

Enough to motivate combining them with NNs!
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Any warnings?

In the presence of latent variables, crucial computations become
challenging and often require approximations.

Discrete latent variables, particularly interesting in NLP, pose further
challenges.

Stochastic parameters, typical of Bayesian modelling, too call for special
treatment since NNs typically contain a lot of parameters.
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The field that studies principled ways to approximate computations in prob-
abilistic ML is known as approximate inference.

In most scenarios, you can think of the word inference as synonym to
computation.

In DL the word inference is typically associated with a search procedure
employed after training to make predictions.

In probabilistic ML, inference typically refers to computations that depend
on solving a marginalisation or an expectation. Inference in that sense is
a computation that aggregates information from various viewpoints. You
can think of inference as standing in contrast to optimisation, which is not
about aggregating, but about singling out.

Many linguistic generalisations/representations are discrete, but discrete-
ness can lead to combinatorial growth and discontinuous cumulative dis-
tribution functions which have an impact on inference and optimisation.



Modelling Random Experiments

What are you getting out of this?

As we progress we will

develop a shared vocabulary to talk about probabilistic models
powered by NNs

derive crucial results step by step

connect concepts and implementation

Goal

you should be able to navigate through fresh literature

and start combining probabilistic models and NNs
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Modelling Observed Random Variables

Example - Music reviews

I downloaded some reviews from Amazon, this is what a datum looks like

We can observe the outcomes of many random variables here.
But do we care about all of them?

Probabll Introduction 17 / 45



Modelling Observed Random Variables

Example - Music reviews

I downloaded some reviews from Amazon, this is what a datum looks like

Let’s say we care about outcomes of overall score and let’s visualise the
observations available.
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Modelling Observed Random Variables

Example - Visualise data

Let’s say we take the overall score assigned to any one review as a random
variable (and ignore everything else in the dataset).
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

Can we capture the general pattern by prescribing some known probability
distribution?
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Modelling Observed Random Variables

Example - Visualise data

Let’s say that overall scores are drawn from some Categorical distribution.
That’s fine, but which one?
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
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Modelling Observed Random Variables

Example - Visualise data

A member of the Categorical family of distributions is specified by a
parameter: a vector of dense probability values whose elements sum to 1.
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

Let’s pick the one that assigns maximum likelihood to our observations.
And let’s assume that our observations were obtained independently.
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

Let’s see how we get to a likelihood value: we decided that
Y (1) ∼ Y (2) ∼ · · · ∼ Y (N) ∼ Cat(φ1, . . . , φ5).
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

Thus p(y (1), . . . , y (N)|φ) =
∏N

i=1 Cat(y (i)|φ) =
∏N

i=1 φy (i) is the likelihood
of observing the data by drawing N times from Cat(φ).

Probabll Introduction 18 / 45

The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

Let’s think of this as a function L(φ) of the parameter φ, and solve
arg maxφ L(φ).
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Modelling Observed Random Variables

Example - Visualise data

We call L(φ) the likelihood function, named this way because it is what we
get when we interpret the likelihood of the data as function of φ.
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

We can equivalently search for φ under the log-likelihood function
L(φ) = log L(φ) and solve arg maxφ L(φ).
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a statistical distribution.
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with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

If you solve this, you will see that the maximum likelihood estimate of the
Categorical distribution is given by dividing the bars in the plot by N.
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The second thing to note is that we can capture the general pattern using
a statistical distribution.

Let’s, for example, assume that overall scores are drawn from some Cate-
gorical distribution. Which one? Well, one option is to pick the one that
makes these observations as likely as possible.

To prove MLE for a Categorical likelihood you will need some proficiency
with partial derivatives and Lagrangian multipliers. It’s okay to also just
find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Fit a Categorical likelihood model by MLE

This clearly captures the exact pattern we saw before. Does this level of
analysis meet the expectation of our target audience or do we need a more
fine grained picture?
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Whether we ‘meet the expectation of the audience’ is a matter of applica-
tion. From the point of view of the statistical model, the job is done.

If the user is interested in learning more about products, buyers, and their
relationship then this is probably insufficient.

For example, can we get a more fine grained picture if we condition on
some predictors?
Recall, the review record contained a lot more information.



Modelling Observed Random Variables

Example - Conditioning on predictors

Let’s see how overall scores distribute for some products

There is a certain amount of variance that is characteristic of how people feel

about the product. Modelling the data means modelling this variance, not

ignoring it!
Probabll Introduction 20 / 45

Can we say the first product is highly appreciated? Can we say the opposite
about the second one?

What can be said about the 3rd and the 4th?

Generally, what can be said is that committing to any overall score hides
variance present in the data.

Whereas for some purposes we may have to choose a single score for a
product, from the point of view of the statistical model that is not at all
the goal. The goal is to model the data well, that is, closely reproducing
statistical properties of the observed data (mean, variance, skew, ...).
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Can we say the first product is highly appreciated? Can we say the opposite
about the second one?

What can be said about the 3rd and the 4th?

Generally, what can be said is that committing to any overall score hides
variance present in the data.

Whereas for some purposes we may have to choose a single score for a
product, from the point of view of the statistical model that is not at all
the goal. The goal is to model the data well, that is, closely reproducing
statistical properties of the observed data (mean, variance, skew, ...).



Modelling Observed Random Variables

Example - Conditioning on predictors

Let’s see how overall scores distribute for some reviewers

There is a certain amount of variance that is typical of a reviewer (e.g., some

people might not bother leaving a review unless they have a strong opinion).

Probabll Introduction 21 / 45

Note that no matter how we view the data, we still find variance.

Explanation 1: the data is the data is the data.

Explanation 2: noisy data.

We need to agree that noisy data is the data. Everything you observe gets
to be called data. There is no such a thing as noisy-free data and no such
a thing as outliers. If you get a dataset and remove outliers you essentially
made different dataset that is artificially easier to model.

You will often see authors blaming the data for their oversight. That’s
either sloppy use of language or an incoherent view of statistics.
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Modelling Observed Random Variables

Example - Conditioning on rich predictors (text)

Reviewers contribute long reviews, but also short summaries. These are short
enough that we can gather more than 20 different reviews per summary.

Probabll Introduction 22 / 45

Top-left: wow
Top-middle: ok
Top-right: what happened
Bottom-left: great album
Bottom-middle: fans can never be objective
Bottom-right: garbage

Some remarks:

• note the trends are quite different from the general trend

• note that we cannot always be very confident about the overall score
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Example - Conditioning on rich predictors (text)

We could model the overall score Y (i) given a summary x (i) = s as a draw from
the summary-specific Categorical distribution Cat(φ(s)).
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Example - Conditioning on rich predictors (text)

But then we would have to estimate as many Categorical distributions as there
are unique summaries. Clearly we will struggle in the future, when a novel
summary pops up.
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Modelling Observed Random Variables

Example - Very rich predictors

Consider a predictor like reviewText

We could not use it in the same way we used the summary. Given a
certain reviewText, we typically only get 1 data point making the problem
look deterministic. This is a fallacy though, it only looks deterministic
because of a modelling choice.
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If you are not convinced that the determinism is artificial, consider the
following thought experiment. Ask everyone in the classroom to assign
stars to a product based on a given review, what might you observe?

We cannot expect determinism, neither we should really look for it. Vari-
ance does not mean we are doing something wrong, the data are like that
indeed: we lack knowledge about all factors involved in the data generating
process.

Consider a person performing some annotation: variability can be result of
lapse in attention, long working hours, or simply inherent to the task.

Whereas determining logical entailment seems rather trivial (well, it still
depends on the excerpts of text we are given), translating is a much more
creative process.



Modelling Observed Random Variables

Machine learning and pattern recognition

Here is where things get interesting, even if a bit less well defined

We want to condition on rich predictors but we want to learn to identify
and exploit patterns that generalise a certain hidden aspect of the data
(e.g., how people relate products, their views, and a certain score).

Probabll Introduction 24 / 45

Why do I say this is a bit less well defined?

We are embracing the idea of learning patterns that are specific enough to
explain away most variance in the data, yet general enough to be reusable
in the future.

We are alluding to some notion of generalisation without a clear idea of
what it is or how to operationalise it.



Modelling Observed Random Variables

Example - Learning to use very rich predictors

Pre 2010 NLP dealt with this mostly by identifying informative features
ϕ(x (i)) of the available predictor x (i). We would then map these features
to the parameter of a Categorical distribution (e.g., via a log-linear model)
on demand: Y (i)|w , x (i) ∼ Cat(softmax(Wϕ(x (i)) + b)).

In DL4NLP we condition on everything available to us by learning how
to map from arbitrarily complex data to the parameters of our
distributions. We do so with NNs: Y (i)|θ, x (i) ∼ Cat(f (x (i); θ)).

There’s a lot of research on how to design f (·; θ) and estimate θ
effectively. This course covers those aspects too!

Probabll Introduction 25 / 45

In Y (i)|x (i) ∼ Cat(f (x (i); θ)), f (·; θ) is a NN architecture with parameters
θ, it maps any covariate x (i), say a long review in English, to the parameters
of the distribution that governs the ith data point, say a probability vector
over 5 classes.
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Modelling Observed Random Variables

Shallow statistical models

We have data y (1), . . . , y (N) e.g. sentences, images
generated by some unknown procedure which we assume can be captured
by a probabilistic model

with known probability (mass/density) function e.g.

Y ∼ Cat(φ1, . . . , φK ) or Y ∼ N (µ, σ2)

and estimate parameters that assign maximum likelihood to observations

Probabll Introduction 26 / 45
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Modelling Observed Random Variables

Parameterisation by NNs

Let x be all side information available
e.g. inputs/features/predictors/covariates

Have neural networks predict parameters of our probabilistic model

Y |x ∼ Cat(f (x ; θ)) or Y |x ∼ N (µ(x ; θ), σ(x ; θ)2)

and proceed to estimate parameters θ of the NNs

Probabll Introduction 27 / 45

NNs compute the parameters of the statistical model. We estimate NN
parameters.
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Graphical model

Random variables

observed data
y (1), . . . , y (N)

Deterministic variables

predictors x (1), . . . , x (N)

non-random observed variable

model parameters θ
non-random and unobservable variable

y

x

θ

N
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For now we are taking the Frequentist point of view where parameters are
assumed known. Clearly we do not just happen to know the parameters of
a statistical model, though we may be able to make a somewhat informed
choice based of the available (training) data.

In Frequentism parameters are determined via optimisation of a likelihood-
based criterion. This is known as parameter estimation.

When we discuss Bayesian principles we will see that alternatively we may
acknowledge that parameters are random variables and that we don’t know
much about them (besides what can be coded in a choice of governing
distribution known as prior). Then we dispense with parameter estimation
altogether, rather using probabilistic inference to reason about quantities
of interest such as probability queries about unobserved random variables
given observed data. This is called posterior inference.



Modelling Observed Random Variables

Task-driven feature extraction

Often our side information is itself some high dimensional object

x is a sentence and y a tree

x is the source sentence and y is the target

x is an image and y is a caption

and part of the job of the NNs that parametrise our models is to also
deterministically encode that input in a low-dimensional space

Probabll Introduction 29 / 45

In representation learning, these encodings are the subject of interest, much
more than the model itself.

Example: word embedding models learn to predict probability distributions
over neighbouring words, but ultimately one only cares about the repre-
sentations of those words, which is internal to the parameterisation of the
distribution.

In fact, in representation learning we find many instances of deep learning
models that are not probabilistic.



Modelling Observed Random Variables

NN as efficient parametrisation

From a statistical point of view, NNs do not generate data

they parametrise distributions that
by assumption generate data

compact and efficient way to map from complex side information to
parameter space

Prediction is done by a decision rule outside the statistical model

e.g. argmax, beam search

Probabll Introduction 30 / 45

From a statistical point of view, it is inconsequential whether you can do
anything useful with intermediate representations inside of an NN.

Example: word embeddings by word2vec are accidental from a statistical
point of view. The embeddings are not a unobserved random variable we
modelled, they are part of the specification of some other distribution. I
use the word ‘accidental’ just to get your attention. Clearly, the inventor
engineered a specific task, and a specific classifier to get word2vec embed-
dings to be useful in the way they are. The inventor exploited inductive
biases aimed at making embeddings function as if they captured lexical
semantics.

What I hope is that you will see that while that there multiple, comple-
mentary, ways to code inductive biases. Manipulating statistical properties
of the model is another one.
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Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)
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Parameter Estimation

MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) =

∇θ

N∑
s=1

log p(y (s)|x (s), θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function

Probabll Introduction 32 / 45

Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?
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Parameter Estimation

Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random

Probabll Introduction 33 / 45

We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose sample space is the space of gradient vectors of our model’s
log-likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?
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Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ)

Sm ∼ U(1/N)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch
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The theory of stochastic optimisation (?) tells us that we will converge to
a local optimum of the objective as long as we take steps that are correct
on average. This means we can optimisation with stochastic gradient
estimates, for as long as they are unbiased estimates of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (?).
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There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (?).



Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ)

Sm ∼ U(1/N)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch
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Parameter Estimation

DL in NLP recipe

Maximum likelihood estimation

tells you which loss to optimise
(i.e. negative log-likelihood)

Automatic differentiation (backprop)

“give me a tractable forward pass and I will give you gradients”

Stochastic optimisation powered by backprop

general purpose gradient-based optimisers
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How about binary cross entropy? Or Categorical cross-entropy? Or MSE?

Those are all (very) closely-related to the negative log-likelihood of a prob-
ability model under a certain choice of output distribution. There is no
need to memorise any such cross entropy, you can derive the correct ex-
pression from basic principles. It’s also easier to talk about and think
of it in terms of log-likelihood, as a ‘cross-entropy’ requires a non-trivial
understanding of the data in terms of observed distributions (rather than
observed outcomes).



Parameter Estimation

Constraints

Differentiability

intermediate representations must be continuous

activations must be differentiable

Tractability

the likelihood function must be evaluated exactly, thus it’s required to
be tractable
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Next class

Deep latent variable models with discrete latent variables

Exact inference

Approximate inference
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Appendix

Probability versus simulation: what came first?

Sometimes a model has a mechanism to generate random draws and this
mechanism could be used–in principle–to compute probability values, but
the computation is intractable. These are called implicit models or
simulators.

The alternative to an implicit model is a prescribed model. In this case
the model has an explicit mechanism to assess the probability value of a
given outcome. This means that–in principle–the model can also be used
to generate random draws, but sometimes this requires intractable
computations.

An example of the former is a GAN, an example of the latter is a
Boltzmann machine.
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Appendix

Inputs and outputs

Watch out! What is to be considered an input or an output depends on
who is doing the processing.

Point of view Input Output

Statistician domain knowledge model specification
data

Parameter estimation model specification parameters
observed data

Statistical model data probability distribution
Decision maker model specification decision

parameters
decision rule
novel data
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The statistician designs a model

Data can be used to estimate free parameters

The model predicts a distribution

Decisions are made based on the output of the model (a distribution).

Besides, NNs have inputs, they are encodings of variables that undergo
transformation (sometimes these inputs were not available from some
dataset of observations, they are outputs from the model via some de-
cision rule).

NNs have outputs, they can be thought of as alternative views of data
(encodings) or statistical parameters of distributions. But they are not
model outputs, nor outputs from the point of view of a specific application
(end user).



Appendix

Latent or Hidden?

For us, and for enough of the community out there, a latent variable is an
unobserved random variable. The two terms are equivalent.

The word hidden is more overloaded and we will simply avoid it
(except perhaps when talking about NN architecture design)

The hidden state of the classic Hidden Markov Model is a latent
variable

A hidden unit in an NN is seldom a latent variable. In fact most
hidden units are not at all unknown: it’s just that it takes a forward
pass through the network for one to be able to ‘see’ (or get to know)
them.
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In doubt, when talking about a latent variable you can simply emphasise
stochasticity by saying ‘unobserved random variable’ or ‘latent random
variable’ (to some the latter will sound repetitive, but not enough to sound
strange).
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Supervised, unsupervised, semi-, self-, . . .

Oh this is a difficult one! Just too many views, many reasonably logical.

I like to think of it as learning in the presence or absence of latent variables. If we
have unobserved random variables that stay unobserved throughout, that’s
unsupervised learning. If a subset of my unobserved variables become available as
observations, that’s semi-supervise. Otherwise it’s supervised.

But remember word2vec? Its inventor wanted to learn word embeddings (sounds
unsupervised, right?), but these are parameters of a binary classifier involving only
observed random variables. How about ’self-supervised’?

I could confuse you for the rest of your lives if I were to get into all proposals.

My advice: stay away from the debate, just be clear about what you do. And if
you can, stay coherent without being too confrontational.
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If I were to justify my point of view I would say it is model-centred (as
opposed to application-centred): that means I do not take the intended
use of the model into account in order to assign one such label. I only
consider the presence or absence of unobserved random variables.

In my view then something like word2vec, or anything by today’s standard
’self-supervised’, is supervised learning. That is, learning in the complete
absence of latent variables.

You can think of these terms from the point of view of the nature of
the random variables (observed, unobserved), or from the point of view
of the purpose of the model, or from the point of view of the type of
distribution, each view leads to a different way to assign the labels. And
there are more, some will say that transfer learning techniques lead to
semi-supervised models.

On self-supervised learning: note that it sounds like the learner (say the
model) found its own supervision, but really we (modellers) were the ones
to find a task for which a cheap-to-obtain observation leads to some rep-
resentation of the data that’s useful in other situations.
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Multiple problems, same language

yx θ

N

(Conditional) Density estimation

Predictor (x) Outcome (y)
Parsing a sentence its syntactic/semantic

parse tree/graph

Translation a sentence its translation

Captioning an image caption in English

Entailment a text and hypothesis entailment relation
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