
Harnessing LM Uncertainty for Decision Making

Wilker Aziz and Bryan Eikema w.aziz@uva.nl b.eikema@uva.nl

https://probabll.github.io

https://probabll.github.io

Table of contents

1. Uncertainty Representation

2. Probing the Uncertainty Representation

3. Selective Prediction

4. Decision Rules & MBR

5. Communicating Uncertainty in Natural Language

6. Closing Remarks

1

Who Pushed Big Bird?

LM:
• Elmo did it.

• It was Elmo.
• Oscar did it.
• Elmo.
• Grover, for sure.

The LM appears to choose the response.

But the appearance is misleading.

Any one response is the byproduct of a number of decisions made
under uncertainty by a recipe or ‘decoding algorithm’.

The LM ‘parameterises’ this algorithm, providing it with predictions
about what is possible, not about what ought to be.

Image by https://openart.ai.
2

https://openart.ai

Who Pushed Big Bird?

LM:
• Elmo did it.

• It was Elmo.
• Oscar did it.
• Elmo.
• Grover, for sure.

The LM appears to choose the response.

But the appearance is misleading.

Any one response is the byproduct of a number of decisions made
under uncertainty by a recipe or ‘decoding algorithm’.

The LM ‘parameterises’ this algorithm, providing it with predictions
about what is possible, not about what ought to be.

Image by https://openart.ai.
2

https://openart.ai

Who Pushed Big Bird?

LM:
• Elmo did it.
• It was Elmo.
• Oscar did it.
• Elmo.
• Grover, for sure.

The LM appears to choose the response.

But the appearance is misleading.

Any one response is the byproduct of a number of decisions made
under uncertainty by a recipe or ‘decoding algorithm’.

The LM ‘parameterises’ this algorithm, providing it with predictions
about what is possible, not about what ought to be.

Image by https://openart.ai.
2

https://openart.ai

Who Pushed Big Bird?

LM:
• Elmo did it.
• It was Elmo.
• Oscar did it.
• Elmo.
• Grover, for sure.

The LM appears to choose the response.

But the appearance is misleading.

Any one response is the byproduct of a number of decisions made
under uncertainty by a recipe or ‘decoding algorithm’.

The LM ‘parameterises’ this algorithm, providing it with predictions
about what is possible, not about what ought to be.

Image by https://openart.ai.
2

https://openart.ai

Harnessing Uncertainty

In the face of uncertainty, we want

• to make choices that are as ‘safe’ as they can be (given the
knowledge we have access to);
this depends on our ability to represent uncertain knowledge

• to convey whatever uncertainty remains in a way readily
interpretable by users.
this depends on our ability to quantify and communicate
intelligible aspects of uncertainty

LMs play a crucial role in uncertainty representation, but making
meaningful use of their state of uncertain knowledge is a pressing
research challenge.

3

Harnessing Uncertainty

In the face of uncertainty, we want

• to make choices that are as ‘safe’ as they can be (given the
knowledge we have access to);
this depends on our ability to represent uncertain knowledge

• to convey whatever uncertainty remains in a way readily
interpretable by users.
this depends on our ability to quantify and communicate
intelligible aspects of uncertainty

LMs play a crucial role in uncertainty representation, but making
meaningful use of their state of uncertain knowledge is a pressing
research challenge.

3

Uncertainty Representation

The autoregressive language model API

Throughout the talk, we assume that one’s preferred LM is an
autoregressive model.

This choice implies access to a specific API that makes various
crucial operations (incl. those needed for training and decoding)
feasible to varying degrees of approximation.

This API allows us to regard an LM as a means to predict conditional
(that is, input-specific) probability distributions (cpds).

4

Prompt→ Language Model→ Distribution over Responses

From sufficiently far away, we can regard an LM as machine that
maps any one prompt to a prompt-specific probability distribution
whose outcome space is the set of all complete token sequences.

Prompt

Who pushed
Big Bird?

Language
Model

Response Distribution
Complete token sequence Prob

EOS 0.0085
Elmo did it EOS 0.0060
It was Elmo EOS 0.0053
Oscar did it EOS 0.0015
Elmo EOS 0.0007
Grover , for sure EOS 0.0005

. . .

*table-like structure for intuition only

5

Not quite the whole story. . .

As we zoom in, we realise that an LM does not really build anything
like this ‘tabular’ representation of the cpd:

Prompt

Who pushed
Big Bird?

Language
Model

Response Distribution
Complete token sequence Prob

EOS 0.0085
Elmo did it EOS 0.0060
It was Elmo EOS 0.0053
Oscar did it EOS 0.0015
Elmo EOS 0.0007
Grover , for sure EOS 0.0005

. . .

*table-like structure for intuition only

rather, it parameterises a special kind of iterative process, which
implicitly identifies one such object.

Prompt and Prefix→ LM Primitive→ Next-Token Distribution

With an empty prefix (represented by a sequence containing BOS only)

Prompt Prefix

Who pushed
Big Bird?

BOS
LM

Primitive

Token Prob

it 0.15
Elmo 0.05
Grover 0.1
Oscar 0.001
for 0.1
was 0.001

. . .

EOS 0.0085

With a longer prefix sequence:

Prompt Prefix

Who pushed
Big Bird?

BOS it
LM

Primitive

Token Prob

it 0.001
Elmo 0.1
Grover 0.02
Oscar 0.001
for 0.05
was 0.25

. . .

EOS 0.01

Prompt: Who pushed BB?. Response: It was Elmo EOS.

*prompt omitted from input for space

BOS

Token Prob

it 0.15
Elmo 0.05
Grover 0.1
Oscar 0.001
for 0.1
was 0.001

. . .

EOS 0.0085

BOS it

Token Prob

it 0.001
Elmo 0.1
Grover 0.02
Oscar 0.001
for 0.05
was 0.25

. . .

EOS 0.01

BOS it was

Token Prob

it 0.001
Elmo 0.2
Grover 0.12
Oscar 0.15
for 0.09
was 0.001

. . .

EOS 0.0001

BOS it was Elmo

Token Prob

it 0.001
Elmo 0.04
Grover 0.02
Oscar 0.001
for 0.03
was 0.007

. . .

EOS 0.7

With probability 0.15, draw it

Prompt: Who pushed BB?. Response: It was Elmo EOS.

*prompt omitted from input for space

BOS

Token Prob

it 0.15
Elmo 0.05
Grover 0.1
Oscar 0.001
for 0.1
was 0.001

. . .

EOS 0.0085

BOS it

Token Prob

it 0.001
Elmo 0.1
Grover 0.02
Oscar 0.001
for 0.05
was 0.25

. . .

EOS 0.01

BOS it was

Token Prob

it 0.001
Elmo 0.2
Grover 0.12
Oscar 0.15
for 0.09
was 0.001

. . .

EOS 0.0001

BOS it was Elmo

Token Prob

it 0.001
Elmo 0.04
Grover 0.02
Oscar 0.001
for 0.03
was 0.007

. . .

EOS 0.7

With probability 0.25, draw was

Prompt: Who pushed BB?. Response: It was Elmo EOS.

*prompt omitted from input for space

BOS

Token Prob

it 0.15
Elmo 0.05
Grover 0.1
Oscar 0.001
for 0.1
was 0.001

. . .

EOS 0.0085

BOS it

Token Prob

it 0.001
Elmo 0.1
Grover 0.02
Oscar 0.001
for 0.05
was 0.25

. . .

EOS 0.01

BOS it was

Token Prob

it 0.001
Elmo 0.2
Grover 0.12
Oscar 0.15
for 0.09
was 0.001

. . .

EOS 0.0001

BOS it was Elmo

Token Prob

it 0.001
Elmo 0.04
Grover 0.02
Oscar 0.001
for 0.03
was 0.007

. . .

EOS 0.7

With probability 0.2, draw Elmo

Prompt: Who pushed BB?. Response: It was Elmo EOS.

*prompt omitted from input for space

BOS

Token Prob

it 0.15
Elmo 0.05
Grover 0.1
Oscar 0.001
for 0.1
was 0.001

. . .

EOS 0.0085

BOS it

Token Prob

it 0.001
Elmo 0.1
Grover 0.02
Oscar 0.001
for 0.05
was 0.25

. . .

EOS 0.01

BOS it was

Token Prob

it 0.001
Elmo 0.2
Grover 0.12
Oscar 0.15
for 0.09
was 0.001

. . .

EOS 0.0001

BOS it was Elmo

Token Prob

it 0.001
Elmo 0.04
Grover 0.02
Oscar 0.001
for 0.03
was 0.007

. . .

EOS 0.7

With probability 0.7, draw EOS

Prompt: Who pushed BB?. Response: It was Elmo EOS.

*prompt omitted from input for space

BOS

Token Prob

it 0.15
Elmo 0.05
Grover 0.1
Oscar 0.001
for 0.1
was 0.001

. . .

EOS 0.0085

BOS it

Token Prob

it 0.001
Elmo 0.1
Grover 0.02
Oscar 0.001
for 0.05
was 0.25

. . .

EOS 0.01

BOS it was

Token Prob

it 0.001
Elmo 0.2
Grover 0.12
Oscar 0.15
for 0.09
was 0.001

. . .

EOS 0.0001

BOS it was Elmo

Token Prob

it 0.001
Elmo 0.04
Grover 0.02
Oscar 0.001
for 0.03
was 0.007

. . .

EOS 0.7

pθ(it was Elmo EOS| ,who pushed BB?) = 0.15× 0.25× 0.2× 0.7 = 0.00525

Factorised Probabilities

Given a prompt x, an autoregressive LM factorises the probability it
assigns to any one response y = ⟨y1, . . . , yℓ⟩ along the ℓ tokens that
make up the response:

P(y|x, θ) =
ℓ∏
i=1

P(yi|x, y<i, θ) .

Why are LMs so often Designed this Way?

There are various answers, here are some

1. there are infinitely many responses, but only finitely many
tokens at each step;

2. this allows us to assess the probability mass of a response
efficiently;

3. this allows us to ‘draw’ outcomes from the model, often with
useful statistical guarantees.

(1) is about feasibility, (2) is useful for supervised training (but also
some forms of decoding), (3) is particularly useful for decoding (but
also some forms of training).

10

Some Limitations

The representation is expressed in terms of probability

• interpretation is not obvious (depending on design choices,
training data and estimation procedure, and likely varying from
prompt to prompt);

• difficulty representing ignorance (or, more generally, different
sources of uncertainty);

• countable additivity and other debatable axioms.

The representation is unstructured

• in probability, structure (in the form of a hierarchy of variables
and their explicit dependencies) is how we distinguish different
sources of uncertainty (e.g., ambiguity, linguistic relatedness,
insufficient knowledge or expressiveness, etc.), but LMs express
uncertainty directly over token sequences.

11

Some Limitations

The representation is expressed in terms of probability

• interpretation is not obvious (depending on design choices,
training data and estimation procedure, and likely varying from
prompt to prompt);

• difficulty representing ignorance (or, more generally, different
sources of uncertainty);

• countable additivity and other debatable axioms.

The representation is unstructured

• in probability, structure (in the form of a hierarchy of variables
and their explicit dependencies) is how we distinguish different
sources of uncertainty (e.g., ambiguity, linguistic relatedness,
insufficient knowledge or expressiveness, etc.), but LMs express
uncertainty directly over token sequences.

11

Summary

We can regard an LM as a mechanism trained to predict entire
input-specific probability distributions over the space of responses.

The most common such mechanisms (incl. encoder-decoder and
decoder-only Transformer models) are built upon a chain-rule
factorisation of the probability of sequences. This allows us to
regard LMs as offering tractable means to:

1. assign probability;
2. sample responses;

There are interesting designs that violate this API (e.g., EBMs), but we
are not covering those today.

12

Probing the Uncertainty
Representation

The Explicit View

By design, an LM offers an API to explicitly assign probabilistic belief
to any response given any prompt.

Prompt

Who pushed
Big Bird?

Language
Model

Response Distribution
Complete token sequence Prob

EOS 0.0085
Elmo did it EOS 0.0060
It was Elmo EOS 0.0053
Oscar did it EOS 0.0015
Elmo EOS 0.0007
Grover , for sure EOS 0.0005

. . .

*table-like structure for intuition only

• ‘fragmentation’: different responses may convey the same information,
so probabilistic belief in any information content is spread over many
responses;

• (lack of) ‘calibration’: probabilistic belief need not reflect any external
interpretation (e.g., rate of correctness);

• ‘unintuitive’: probabilities are assigned piecemeal with strange and
unintuitive effects on what is ‘typically realisable’ 13

Statistical Analysis of Samples

The standard LM API also supports (stochastic) sampling.

Sa
m
pl
e

F
re
qu

en
cy

Grover OscarElmo

Elmo Grover Oscar

Elmo pushed him. Grover did it. Oscar.
Elmo did it. Grover, for sure.
It was Elmo. Grover.
Elmo.
Elmo.

• we obtain ‘realisable’ sequences;
• (statistical) properties and regularities (or lack thereof) of
samples shed light on the kind of knowledge the LM represents
about the prompt and responses;

A sampler also identifies a probability distribution, but implicitly via statistical
properties of generated samples. Some samplers (forward, Gibbs, etc.) support
decisions that are coherent with the explicit view, others don’t (temp, top-k, etc.).

14

Verbalised Uncertainty

Models can generate linguistic markers that are suggestive of
(un)certainty. As when the LM generates ‘Grover, for sure’.

Who pushed Big Bird?

Bad:
• Elmo did it.
• It was Elmo.
• Oscar did it.
• Elmo.
• Grover, for sure.

Better:

Probably Elmo, but
there’s a small chance
that Grover or Oscar
did it.

We can steer a model to pick these markers for coherence with its
belief state given the prompt.

15

Verbalised Uncertainty

Models can generate linguistic markers that are suggestive of
(un)certainty. As when the LM generates ‘Grover, for sure’.

Who pushed Big Bird?

Bad:
• Elmo did it.
• It was Elmo.
• Oscar did it.
• Elmo.
• Grover, for sure.

Better:

Probably Elmo, but
there’s a small chance
that Grover or Oscar
did it.

We can steer a model to pick these markers for coherence with its
belief state given the prompt.

15

Summary

The explicit view requires access to the model (most APIs provide
sampling / generation, but not the token-level distributions).

The implicit (sampler-based) view is customisable (different
samplers may implement different biases, sometimes by design), but
it requires statistical analysis and hence more computation.

‘Verbalised uncertainty’ is an adaptation of the generator and, as
such, it requires careful design and evaluation, but it is a more
user-friendly tool.

16

Summary

The explicit view requires access to the model (most APIs provide
sampling / generation, but not the token-level distributions).

The implicit (sampler-based) view is customisable (different
samplers may implement different biases, sometimes by design), but
it requires statistical analysis and hence more computation.

‘Verbalised uncertainty’ is an adaptation of the generator and, as
such, it requires careful design and evaluation, but it is a more
user-friendly tool.

16

Summary

The explicit view requires access to the model (most APIs provide
sampling / generation, but not the token-level distributions).

The implicit (sampler-based) view is customisable (different
samplers may implement different biases, sometimes by design), but
it requires statistical analysis and hence more computation.

‘Verbalised uncertainty’ is an adaptation of the generator and, as
such, it requires careful design and evaluation, but it is a more
user-friendly tool.

16

What Next?

We will now discuss three ways in which uncertainty an LM
associates with a given prompt—its belief state—can be ‘harnessed’
for better interaction:

1. Parameterising decision making pipelines
or Should we respond?

2. Parameterising decision rules;
or What should we respond with?

3. User-friendly communication of a complex belief state
or Can we respond but also convey as much (un)certainty as
necessary in order to be coherent with the belief state?

17

Selective Prediction

Overview

A common use for uncertainty is to parameterise ‘decision making
pipelines’.

One basic such pipeline is called selective prediction [23, 40]

• choose an uncertainty quantifier ρ(x)—a numerical summary of
the LM’s belief state given x;

• treat ρ(x) as predictive of ‘risk’ of poor decisions;
• abstain from deciding when ρ(x) predicts high risk.

Some variants use quantifiers ρ(x, y) based on a specific candidate
response (usually these are called ‘confidence’).

A less basic pipeline might allow for interaction. For example, in an
attempt to reduce the risk of making a decision, we may prompt the
user to provide additional information [25, 49].

18

Overview

A common use for uncertainty is to parameterise ‘decision making
pipelines’.

One basic such pipeline is called selective prediction [23, 40]

• choose an uncertainty quantifier ρ(x)—a numerical summary of
the LM’s belief state given x;

• treat ρ(x) as predictive of ‘risk’ of poor decisions;
• abstain from deciding when ρ(x) predicts high risk.

Some variants use quantifiers ρ(x, y) based on a specific candidate
response (usually these are called ‘confidence’).

A less basic pipeline might allow for interaction. For example, in an
attempt to reduce the risk of making a decision, we may prompt the
user to provide additional information [25, 49].

18

Overview

A common use for uncertainty is to parameterise ‘decision making
pipelines’.

One basic such pipeline is called selective prediction [23, 40]

• choose an uncertainty quantifier ρ(x)—a numerical summary of
the LM’s belief state given x;

• treat ρ(x) as predictive of ‘risk’ of poor decisions;
• abstain from deciding when ρ(x) predicts high risk.

Some variants use quantifiers ρ(x, y) based on a specific candidate
response (usually these are called ‘confidence’).

A less basic pipeline might allow for interaction. For example, in an
attempt to reduce the risk of making a decision, we may prompt the
user to provide additional information [25, 49].

18

Uncertainty Quantifiers for Selective Prediction (SP)

Most uncertainty quantifiers associate ‘lack of concentration’ of
probability mass with error:

• Average token surprisal 1ℓ
∑ℓ

i=1 log P(yi|x, y<i, θ)
• Average entropy of next-token CPDs
• Entropy of CPD [44]

Recent move to incorporate ‘linguistic invariances’. For example, to
associate spread over semantically distinct forms with error:

• Semantic entropy [26]
• Various forms of consistency (syntactic, logical, reasoning)
[1, 20, 42]

• Representational similarity [5, 31]

The list goes on. There are 10s of these showing up every month. The
principle is typically the same: formulate a quantifier, show that it
can be used to separate ‘good’ decisions from ‘poor’ ones.

19

Uncertainty Quantifiers for Selective Prediction (SP)

Most uncertainty quantifiers associate ‘lack of concentration’ of
probability mass with error:

• Average token surprisal 1ℓ
∑ℓ

i=1 log P(yi|x, y<i, θ)
• Average entropy of next-token CPDs
• Entropy of CPD [44]

Recent move to incorporate ‘linguistic invariances’. For example, to
associate spread over semantically distinct forms with error:

• Semantic entropy [26]
• Various forms of consistency (syntactic, logical, reasoning)
[1, 20, 42]

• Representational similarity [5, 31]

The list goes on. There are 10s of these showing up every month. The
principle is typically the same: formulate a quantifier, show that it
can be used to separate ‘good’ decisions from ‘poor’ ones.

19

Uncertainty Quantifiers for Selective Prediction (SP)

Most uncertainty quantifiers associate ‘lack of concentration’ of
probability mass with error:

• Average token surprisal 1ℓ
∑ℓ

i=1 log P(yi|x, y<i, θ)
• Average entropy of next-token CPDs
• Entropy of CPD [44]

Recent move to incorporate ‘linguistic invariances’. For example, to
associate spread over semantically distinct forms with error:

• Semantic entropy [26]
• Various forms of consistency (syntactic, logical, reasoning)
[1, 20, 42]

• Representational similarity [5, 31]

The list goes on. There are 10s of these showing up every month. The
principle is typically the same: formulate a quantifier, show that it
can be used to separate ‘good’ decisions from ‘poor’ ones.

19

What is a Good Uncertainty Quantifier?

(Anti-)Correlation Between Uncertainty/Confidence and Quality of Response

20

Does ‘Lack of Concentration’ Really Predict Errors?

Regarding fragmentation of beliefs as a symptom of unreliable
knowledge echoes the idea that disagreement is a form of error, but
NLG applications challenge this idea [2, 33].

Bottom: the rather ‘flat’ model distribution over responses for an ambiguous
question. Centre: pushes the model distribution through a ‘meaning’
classifier. Top: pushes the model distribution through an adequacy classifier.

21

Probabilty of Adequate Response (ProbAR) Ilia and Aziz [19]

ProbAR estimates the rate at which the model’s belief state produces
adequate responses via sampling.

Adequacy is judged automatically by a reward model (general
purpose or task-specific).

ProbAR with LM-predicted adequacy outperforms variants of entropy and P(true).

Evaluation of SP via AUROC correlates UQ with Response Quality measured by a
judge. We use human judgement (left), ChatGPT (centre) and RougeL (right).

22

Summary

The belief state can be summarised into a number that is predictive
of task success.

The good stuff

• Such an ‘uncertainty quantifier’ can inform a selective decision
maker that abstains from responding to avoid errors.

The bad stuff

• Many uncertainty quantifiers are hardly interpretable, hence it
can be hard to design a concrete rule.

• Many quantifiers exploit basic and often unrealistic assumptions
about data uncertainty.

23

Decision Rules & MBR

From Selective Prediction to Decision Making

• In selective prediction, uncertainty helps us decide when not to
make a prediction.

• But what about the cases where we must produce an output?
• Then uncertainty can guide how we choose among many
plausible hypotheses.

24

From Selective Prediction to Decision Making

• In selective prediction, uncertainty helps us decide when not to
make a prediction.

• But what about the cases where we must produce an output?

• Then uncertainty can guide how we choose among many
plausible hypotheses.

24

From Selective Prediction to Decision Making

• In selective prediction, uncertainty helps us decide when not to
make a prediction.

• But what about the cases where we must produce an output?
• Then uncertainty can guide how we choose among many
plausible hypotheses.

24

From Distributions to Decisions

• A language model predicts distributions, not single outcomes:

P(Y | x, θ)

• At test time, however, we typically output a single generation.
• A decision rule maps a distribution→ an outcome.
• A decoding algorithm implements (an approximation to) such a
decision rule.

• Key question: under uncertainty, how do we best summarise the
model’s beliefs?

25

From Distributions to Decisions

• A language model predicts distributions, not single outcomes:

P(Y | x, θ)

• At test time, however, we typically output a single generation.

• A decision rule maps a distribution→ an outcome.
• A decoding algorithm implements (an approximation to) such a
decision rule.

• Key question: under uncertainty, how do we best summarise the
model’s beliefs?

25

From Distributions to Decisions

• A language model predicts distributions, not single outcomes:

P(Y | x, θ)

• At test time, however, we typically output a single generation.
• A decision rule maps a distribution→ an outcome.

• A decoding algorithm implements (an approximation to) such a
decision rule.

• Key question: under uncertainty, how do we best summarise the
model’s beliefs?

25

From Distributions to Decisions

• A language model predicts distributions, not single outcomes:

P(Y | x, θ)

• At test time, however, we typically output a single generation.
• A decision rule maps a distribution→ an outcome.
• A decoding algorithm implements (an approximation to) such a
decision rule.

• Key question: under uncertainty, how do we best summarise the
model’s beliefs?

25

From Distributions to Decisions

• A language model predicts distributions, not single outcomes:

P(Y | x, θ)

• At test time, however, we typically output a single generation.
• A decision rule maps a distribution→ an outcome.
• A decoding algorithm implements (an approximation to) such a
decision rule.

• Key question: under uncertainty, how do we best summarise the
model’s beliefs?

25

Maximum-A-Posteriori (MAP)

• Intuition: use model probability as a guide.

• The most common decision rule is maximum-a-posteriori (MAP):

yMAP = argmax
y

P(y | x, θ)

• MAP selects the single hypothesis to which the model assigns
greatest belief: the mode.

• Greedy decoding and beam search can be viewed as
approximations to MAP.

26

Maximum-A-Posteriori (MAP)

• Intuition: use model probability as a guide.
• The most common decision rule is maximum-a-posteriori (MAP):

yMAP = argmax
y

P(y | x, θ)

• MAP selects the single hypothesis to which the model assigns
greatest belief: the mode.

• Greedy decoding and beam search can be viewed as
approximations to MAP.

26

Maximum-A-Posteriori (MAP)

• Intuition: use model probability as a guide.
• The most common decision rule is maximum-a-posteriori (MAP):

yMAP = argmax
y

P(y | x, θ)

• MAP selects the single hypothesis to which the model assigns
greatest belief: the mode.

• Greedy decoding and beam search can be viewed as
approximations to MAP.

26

Maximum-A-Posteriori (MAP)

• Intuition: use model probability as a guide.
• The most common decision rule is maximum-a-posteriori (MAP):

yMAP = argmax
y

P(y | x, θ)

• MAP selects the single hypothesis to which the model assigns
greatest belief: the mode.

• Greedy decoding and beam search can be viewed as
approximations to MAP.

26

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?

• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:

• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.

• MAP ignores the overall structure and similarity of different
outcomes.

27

The Inadequacy of the Mode Eikema and Aziz [8]

• Is MAP all we need?
• Many works in NLG have shown that model probability does not
reliably align with human preferences [8, 24, 47, 48].

• High probability outcomes can be overly short [24], generic or
containing repetitive phrases [18], or even copies of the input
[32].

• Under high uncertainty, the MAP solution can be:
• atypical: unlike a typical sample from the model, e.g. an empty
sequence [34],

• unrepresentative: represent less than 1% of the probability mass
[8, 32].

• In practice, LMs place mass on many plausible outputs.
• MAP ignores the overall structure and similarity of different
outcomes.

27

What about sampling?

• Sampling (ancestral, top-k, nucleus) is quite effective in practice
and often yields high-quality generations.

• However, sampling is a way to explore the model’s distribution,
not a way to choose the best output for a specific input.

• A single sample does not optimize any task-specific loss and
does not need to be representative of the distribution.

• But some settings require a consistent, principled choice:
• evaluation and benchmarking,
• safety-critical or high-stakes decisions,
• reducing hallucination by preferring stable hypotheses.

• In these cases, we must decide which output is best under the
model’s beliefs.

28

What about sampling?

• Sampling (ancestral, top-k, nucleus) is quite effective in practice
and often yields high-quality generations.

• However, sampling is a way to explore the model’s distribution,
not a way to choose the best output for a specific input.

• A single sample does not optimize any task-specific loss and
does not need to be representative of the distribution.

• But some settings require a consistent, principled choice:
• evaluation and benchmarking,
• safety-critical or high-stakes decisions,
• reducing hallucination by preferring stable hypotheses.

• In these cases, we must decide which output is best under the
model’s beliefs.

28

What about sampling?

• Sampling (ancestral, top-k, nucleus) is quite effective in practice
and often yields high-quality generations.

• However, sampling is a way to explore the model’s distribution,
not a way to choose the best output for a specific input.

• A single sample does not optimize any task-specific loss and
does not need to be representative of the distribution.

• But some settings require a consistent, principled choice:
• evaluation and benchmarking,
• safety-critical or high-stakes decisions,
• reducing hallucination by preferring stable hypotheses.

• In these cases, we must decide which output is best under the
model’s beliefs.

28

What about sampling?

• Sampling (ancestral, top-k, nucleus) is quite effective in practice
and often yields high-quality generations.

• However, sampling is a way to explore the model’s distribution,
not a way to choose the best output for a specific input.

• A single sample does not optimize any task-specific loss and
does not need to be representative of the distribution.

• But some settings require a consistent, principled choice:
• evaluation and benchmarking,
• safety-critical or high-stakes decisions,
• reducing hallucination by preferring stable hypotheses.

• In these cases, we must decide which output is best under the
model’s beliefs.

28

What about sampling?

• Sampling (ancestral, top-k, nucleus) is quite effective in practice
and often yields high-quality generations.

• However, sampling is a way to explore the model’s distribution,
not a way to choose the best output for a specific input.

• A single sample does not optimize any task-specific loss and
does not need to be representative of the distribution.

• But some settings require a consistent, principled choice:
• evaluation and benchmarking,
• safety-critical or high-stakes decisions,
• reducing hallucination by preferring stable hypotheses.

• In these cases, we must decide which output is best under the
model’s beliefs.

28

Minimum Bayes Risk (MBR)

• MBR selects the output with the highest expected utility (or
equivalently, lowest expected loss / risk):

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)] .

• The decision depends on:
• the predictive distribution P(y | x, θ),
• the utility (or loss) function u(y, y′) expressing task preferences.

• In natural language generation, we typically chose this utility to
be a text similarity metric.

• Unlike MAP, MBR reasons over the entire distribution, taking into
account similarity between outcomes.

• Like MAP, we need to approximate this objective.

29

Minimum Bayes Risk (MBR)

• MBR selects the output with the highest expected utility (or
equivalently, lowest expected loss / risk):

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)] .

• The decision depends on:
• the predictive distribution P(y | x, θ),
• the utility (or loss) function u(y, y′) expressing task preferences.

• In natural language generation, we typically chose this utility to
be a text similarity metric.

• Unlike MAP, MBR reasons over the entire distribution, taking into
account similarity between outcomes.

• Like MAP, we need to approximate this objective.

29

Minimum Bayes Risk (MBR)

• MBR selects the output with the highest expected utility (or
equivalently, lowest expected loss / risk):

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)] .

• The decision depends on:
• the predictive distribution P(y | x, θ),
• the utility (or loss) function u(y, y′) expressing task preferences.

• In natural language generation, we typically chose this utility to
be a text similarity metric.

• Unlike MAP, MBR reasons over the entire distribution, taking into
account similarity between outcomes.

• Like MAP, we need to approximate this objective.

29

Minimum Bayes Risk (MBR)

• MBR selects the output with the highest expected utility (or
equivalently, lowest expected loss / risk):

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)] .

• The decision depends on:
• the predictive distribution P(y | x, θ),
• the utility (or loss) function u(y, y′) expressing task preferences.

• In natural language generation, we typically chose this utility to
be a text similarity metric.

• Unlike MAP, MBR reasons over the entire distribution, taking into
account similarity between outcomes.

• Like MAP, we need to approximate this objective.

29

Minimum Bayes Risk (MBR)

• MBR selects the output with the highest expected utility (or
equivalently, lowest expected loss / risk):

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)] .

• The decision depends on:
• the predictive distribution P(y | x, θ),
• the utility (or loss) function u(y, y′) expressing task preferences.

• In natural language generation, we typically chose this utility to
be a text similarity metric.

• Unlike MAP, MBR reasons over the entire distribution, taking into
account similarity between outcomes.

• Like MAP, we need to approximate this objective.

29

Approximating MBR

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)]

• Exact MBR is infeasible in language generation:
• The argmax ranges over an unbounded space of all possible
generations.

• The expectation requires summing over this entire space.

• We therefore approximate both the search space and the
expectation using samples [8, 9].

• Sampling provides:
• a finite candidate set,
• and a Monte Carlo estimate of expected utility.

30

Approximating MBR

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)]

• Exact MBR is infeasible in language generation:
• The argmax ranges over an unbounded space of all possible
generations.

• The expectation requires summing over this entire space.

• We therefore approximate both the search space and the
expectation using samples [8, 9].

• Sampling provides:
• a finite candidate set,
• and a Monte Carlo estimate of expected utility.

30

Approximating MBR

yMBR = argmax
y

Ey′∼P(Y|x,θ) [u(y, y′)]

• Exact MBR is infeasible in language generation:
• The argmax ranges over an unbounded space of all possible
generations.

• The expectation requires summing over this entire space.

• We therefore approximate both the search space and the
expectation using samples [8, 9].

• Sampling provides:
• a finite candidate set,
• and a Monte Carlo estimate of expected utility.

30

Sampling-Based MBR Eikema and Aziz [9]

1. Draw N unbiased samples from the model:

y(1), . . . , y(N) ∼ P(Y | x, θ).

2. Use these samples as the candidate set.
3. Estimate expected utility for each candidate via Monte Carlo:

û(y(i)) = 1
N− 1

∑
j̸=i

u
(
y(i), y(j)

)
.

4. Select the candidate with the highest sample average utility:

ŷMBR ≈ argmax
i

û
(
y(i)

)
.

31

Sampling-Based MBR Eikema and Aziz [9]

1. Draw N unbiased samples from the model:

y(1), . . . , y(N) ∼ P(Y | x, θ).

2. Use these samples as the candidate set.

3. Estimate expected utility for each candidate via Monte Carlo:

û(y(i)) = 1
N− 1

∑
j̸=i

u
(
y(i), y(j)

)
.

4. Select the candidate with the highest sample average utility:

ŷMBR ≈ argmax
i

û
(
y(i)

)
.

31

Sampling-Based MBR Eikema and Aziz [9]

1. Draw N unbiased samples from the model:

y(1), . . . , y(N) ∼ P(Y | x, θ).

2. Use these samples as the candidate set.
3. Estimate expected utility for each candidate via Monte Carlo:

û(y(i)) = 1
N− 1

∑
j ̸=i

u
(
y(i), y(j)

)
.

4. Select the candidate with the highest sample average utility:

ŷMBR ≈ argmax
i

û
(
y(i)

)
.

31

Sampling-Based MBR Eikema and Aziz [9]

1. Draw N unbiased samples from the model:

y(1), . . . , y(N) ∼ P(Y | x, θ).

2. Use these samples as the candidate set.
3. Estimate expected utility for each candidate via Monte Carlo:

û(y(i)) = 1
N− 1

∑
j ̸=i

u
(
y(i), y(j)

)
.

4. Select the candidate with the highest sample average utility:

ŷMBR ≈ argmax
i

û
(
y(i)

)
.

31

Example: MBR in Machine Translation

Source sentence: “Het is mooi weer vandaag.”

y(1): “The weather is
beautiful today.</s>”

y(2):“It’s nice
weather today.</s>”

y(3): “The weather
is nice today.</s>”

y(4): “</s>” y(5): “The weather
is great today.</s>”

0.91 0.8
8

-0.1
0 0.90

Under the lens of BLEURT in this example, MBR selects the candidate with
the highest average similarity to the others. 32

The Effectiveness of MBR

• Machine Translation
• Sampling-based MBR has long been found to outperform MAP /
beam search when using task-relevant neural utility functions
(BLEURT, COMET) [12, 15].

• Beyond MT
• Summarisation, data-to-text generation & textual style transfer:
MBR with BERTScore/BLEURT [35].

• Instruction-following: MBR with LLM-as-a-judge as the utility
function [43].

• Better approximations⇒ better outputs
• Better approximations of the MBR objective consistently lead to
higher performance [9, 30]

• Advances in automatic evaluation translate into stronger MBR
decisions [15, 43].

• But MBR is expensive
• Requires multiple generations and computing a utility matrix over
candidates.

• Computational cost is a barrier to deployment at scale.

33

The Effectiveness of MBR

• Machine Translation
• Sampling-based MBR has long been found to outperform MAP /
beam search when using task-relevant neural utility functions
(BLEURT, COMET) [12, 15].

• Beyond MT
• Summarisation, data-to-text generation & textual style transfer:
MBR with BERTScore/BLEURT [35].

• Instruction-following: MBR with LLM-as-a-judge as the utility
function [43].

• Better approximations⇒ better outputs
• Better approximations of the MBR objective consistently lead to
higher performance [9, 30]

• Advances in automatic evaluation translate into stronger MBR
decisions [15, 43].

• But MBR is expensive
• Requires multiple generations and computing a utility matrix over
candidates.

• Computational cost is a barrier to deployment at scale.

33

The Effectiveness of MBR

• Machine Translation
• Sampling-based MBR has long been found to outperform MAP /
beam search when using task-relevant neural utility functions
(BLEURT, COMET) [12, 15].

• Beyond MT
• Summarisation, data-to-text generation & textual style transfer:
MBR with BERTScore/BLEURT [35].

• Instruction-following: MBR with LLM-as-a-judge as the utility
function [43].

• Better approximations⇒ better outputs
• Better approximations of the MBR objective consistently lead to
higher performance [9, 30]

• Advances in automatic evaluation translate into stronger MBR
decisions [15, 43].

• But MBR is expensive
• Requires multiple generations and computing a utility matrix over
candidates.

• Computational cost is a barrier to deployment at scale.

33

The Effectiveness of MBR

• Machine Translation
• Sampling-based MBR has long been found to outperform MAP /
beam search when using task-relevant neural utility functions
(BLEURT, COMET) [12, 15].

• Beyond MT
• Summarisation, data-to-text generation & textual style transfer:
MBR with BERTScore/BLEURT [35].

• Instruction-following: MBR with LLM-as-a-judge as the utility
function [43].

• Better approximations⇒ better outputs
• Better approximations of the MBR objective consistently lead to
higher performance [9, 30]

• Advances in automatic evaluation translate into stronger MBR
decisions [15, 43].

• But MBR is expensive
• Requires multiple generations and computing a utility matrix over
candidates.

• Computational cost is a barrier to deployment at scale.

33

The Effectiveness of MBR

• Machine Translation
• Sampling-based MBR has long been found to outperform MAP /
beam search when using task-relevant neural utility functions
(BLEURT, COMET) [12, 15].

• Beyond MT
• Summarisation, data-to-text generation & textual style transfer:
MBR with BERTScore/BLEURT [35].

• Instruction-following: MBR with LLM-as-a-judge as the utility
function [43].

• Better approximations⇒ better outputs
• Better approximations of the MBR objective consistently lead to
higher performance [9, 30]

• Advances in automatic evaluation translate into stronger MBR
decisions [15, 43].

• But MBR is expensive
• Requires multiple generations and computing a utility matrix over
candidates.

• Computational cost is a barrier to deployment at scale.

33

The Effectiveness of MBR

• Machine Translation
• Sampling-based MBR has long been found to outperform MAP /
beam search when using task-relevant neural utility functions
(BLEURT, COMET) [12, 15].

• Beyond MT
• Summarisation, data-to-text generation & textual style transfer:
MBR with BERTScore/BLEURT [35].

• Instruction-following: MBR with LLM-as-a-judge as the utility
function [43].

• Better approximations⇒ better outputs
• Better approximations of the MBR objective consistently lead to
higher performance [9, 30]

• Advances in automatic evaluation translate into stronger MBR
decisions [15, 43].

• But MBR is expensive
• Requires multiple generations and computing a utility matrix over
candidates.

• Computational cost is a barrier to deployment at scale. 33

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].
• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].
• Distilling the improvements

• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45].

34

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].
• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].
• Distilling the improvements

• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45].

34

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].
• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].
• Distilling the improvements

• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45].

34

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].

• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].
• Distilling the improvements

• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45].

34

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].
• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].
• Distilling the improvements

• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45].

34

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].
• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].

• Distilling the improvements
• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45].

34

Improving MBR Efficiency

• Smarter candidate sets
• Instead of N unbiased samples, generate candidates using
methods that yield higher-utility sets on average: top-k sampling,
nucleus sampling, etc. [9].

• Biased estimates
• Remove the long tail by truncating the support (ε-sampling
usually [17]). Use both as candidates and for MC estimation [14].

• Incorporate model probability into the expected utility
computation [21].

• Reducing utility computations
• Cluster candidates and compare only to cluster medoids [7, 39].
• Prune low-quality or redundant samples based on confidence
intervals or cheaper proxy objectives [6, 9].

• Use matrix completion algorithms to predict comparisons [36].
• Distilling the improvements

• Train a model to mimic the MBR-selected outputs, amortizing the
cost into training. Afterwards, use fast decoding algorithms (e.g.
greedy decoding) on the fine-tuned model [13, 45]. 34

Direct Preference Optimization for MBR

Direct Preference Optimization for MBR [45] is a particularly popular
strategy right now. The procedure is as follows:

1. The model first generates a candidate set using ancestral
sampling.

2. Then we rank hypotheses based on expected utility estimates.
3. The ranked list is then used to construct preference pairs for
DPO training, choosing (yw, yl) such that û(yw) > û(yl).

4. Fine-tune the model on the preference pairs using Direct Policy
Optimization (DPO).

5. After fine-tuning, single-pass decoding (beam/greedy) produces
outputs that perform considerably better than the original
model.

35

Direct Preference Optimization for MBR

Direct Preference Optimization for MBR [45] is a particularly popular
strategy right now. The procedure is as follows:

1. The model first generates a candidate set using ancestral
sampling.

2. Then we rank hypotheses based on expected utility estimates.

3. The ranked list is then used to construct preference pairs for
DPO training, choosing (yw, yl) such that û(yw) > û(yl).

4. Fine-tune the model on the preference pairs using Direct Policy
Optimization (DPO).

5. After fine-tuning, single-pass decoding (beam/greedy) produces
outputs that perform considerably better than the original
model.

35

Direct Preference Optimization for MBR

Direct Preference Optimization for MBR [45] is a particularly popular
strategy right now. The procedure is as follows:

1. The model first generates a candidate set using ancestral
sampling.

2. Then we rank hypotheses based on expected utility estimates.
3. The ranked list is then used to construct preference pairs for
DPO training, choosing (yw, yl) such that û(yw) > û(yl).

4. Fine-tune the model on the preference pairs using Direct Policy
Optimization (DPO).

5. After fine-tuning, single-pass decoding (beam/greedy) produces
outputs that perform considerably better than the original
model.

35

Direct Preference Optimization for MBR

Direct Preference Optimization for MBR [45] is a particularly popular
strategy right now. The procedure is as follows:

1. The model first generates a candidate set using ancestral
sampling.

2. Then we rank hypotheses based on expected utility estimates.
3. The ranked list is then used to construct preference pairs for
DPO training, choosing (yw, yl) such that û(yw) > û(yl).

4. Fine-tune the model on the preference pairs using Direct Policy
Optimization (DPO).

5. After fine-tuning, single-pass decoding (beam/greedy) produces
outputs that perform considerably better than the original
model.

35

Direct Preference Optimization for MBR

Direct Preference Optimization for MBR [45] is a particularly popular
strategy right now. The procedure is as follows:

1. The model first generates a candidate set using ancestral
sampling.

2. Then we rank hypotheses based on expected utility estimates.
3. The ranked list is then used to construct preference pairs for
DPO training, choosing (yw, yl) such that û(yw) > û(yl).

4. Fine-tune the model on the preference pairs using Direct Policy
Optimization (DPO).

5. After fine-tuning, single-pass decoding (beam/greedy) produces
outputs that perform considerably better than the original
model.

35

MBR in Open-Ended Generation

• MBR has shown most success in machine translation, but has
been used to a much lesser extent in open-ended generation.

• How does MBR operate when our language models truly capture
multiple plausible, but structurally distinct responses?

• Will it “summarise” the model beliefs well?

36

MBR in Open-Ended Generation

• MBR has shown most success in machine translation, but has
been used to a much lesser extent in open-ended generation.

• How does MBR operate when our language models truly capture
multiple plausible, but structurally distinct responses?

• Will it “summarise” the model beliefs well?

36

MBR in Open-Ended Generation

• MBR has shown most success in machine translation, but has
been used to a much lesser extent in open-ended generation.

• How does MBR operate when our language models truly capture
multiple plausible, but structurally distinct responses?

• Will it “summarise” the model beliefs well?

36

A Dialogue Example

A: The mountains would be a great place for the lab retreat.
B: That’s a wonderful choice.

Possible follow-ups from A:

• Statement: “The mountains offer many outdoor team-building
activities.”

• Question: “Which aspects of the mountains are you most excited
about?”

• Directive: “Please check out different venues online to finalise
the decision.”

• Offer: “Shall I make the necessary arrangements?”

37

A Dialogue Example

A: The mountains would be a great place for the lab retreat.
B: That’s a wonderful choice.

Possible follow-ups from A:

• Statement: “The mountains offer many outdoor team-building
activities.”

• Question: “Which aspects of the mountains are you most excited
about?”

• Directive: “Please check out different venues online to finalise
the decision.”

• Offer: “Shall I make the necessary arrangements?”

37

A Dialogue Example

A: The mountains would be a great place for the lab retreat.
B: That’s a wonderful choice.

Possible follow-ups from A:

• Statement: “The mountains offer many outdoor team-building
activities.”

• Question: “Which aspects of the mountains are you most excited
about?”

• Directive: “Please check out different venues online to finalise
the decision.”

• Offer: “Shall I make the necessary arrangements?”

37

A Dialogue Example

A: The mountains would be a great place for the lab retreat.
B: That’s a wonderful choice.

Possible follow-ups from A:

• Statement: “The mountains offer many outdoor team-building
activities.”

• Question: “Which aspects of the mountains are you most excited
about?”

• Directive: “Please check out different venues online to finalise
the decision.”

• Offer: “Shall I make the necessary arrangements?”

37

A Dialogue Example

A: The mountains would be a great place for the lab retreat.
B: That’s a wonderful choice.

Possible follow-ups from A:

• Statement: “The mountains offer many outdoor team-building
activities.”

• Question: “Which aspects of the mountains are you most excited
about?”

• Directive: “Please check out different venues online to finalise
the decision.”

• Offer: “Shall I make the necessary arrangements?”

37

MBR May Compromise Among Modes

Statement

Question

Offer

Using common utility choices (BLEURT, BERTScore), sampling-based
MBR often compromises between semantic modes: the MBR-selected
output is not optimal when evaluated within its own
semantic/structural cluster in > 50% of cases [11].

38

MBR May Compromise Among Modes

Statement

Question

Offer

Using common utility choices (BLEURT, BERTScore), sampling-based
MBR often compromises between semantic modes: the MBR-selected
output is not optimal when evaluated within its own
semantic/structural cluster in > 50% of cases [11].

38

Structure-Conditional MBR Eikema et al. [11]

• Perhaps we can first cluster using a clustering model sensitive to
types of high-level structure we are interested in.

• Perhaps we can adapt the utility to penalise comparisons more
harshly across differ underlying high-level structures.

• In [11] we show that using very cheap lightweight adaptations
like this we can change MBR behaviour to be cluster-optimal in
open-ended generation.

• We also show this improves MBR performance on real-world
instruction-following tasks.

39

Structure-Conditional MBR Eikema et al. [11]

• Perhaps we can first cluster using a clustering model sensitive to
types of high-level structure we are interested in.

• Perhaps we can adapt the utility to penalise comparisons more
harshly across differ underlying high-level structures.

• In [11] we show that using very cheap lightweight adaptations
like this we can change MBR behaviour to be cluster-optimal in
open-ended generation.

• We also show this improves MBR performance on real-world
instruction-following tasks.

39

Structure-Conditional MBR Eikema et al. [11]

• Perhaps we can first cluster using a clustering model sensitive to
types of high-level structure we are interested in.

• Perhaps we can adapt the utility to penalise comparisons more
harshly across differ underlying high-level structures.

• In [11] we show that using very cheap lightweight adaptations
like this we can change MBR behaviour to be cluster-optimal in
open-ended generation.

• We also show this improves MBR performance on real-world
instruction-following tasks.

39

Structure-Conditional MBR Eikema et al. [11]

• Perhaps we can first cluster using a clustering model sensitive to
types of high-level structure we are interested in.

• Perhaps we can adapt the utility to penalise comparisons more
harshly across differ underlying high-level structures.

• In [11] we show that using very cheap lightweight adaptations
like this we can change MBR behaviour to be cluster-optimal in
open-ended generation.

• We also show this improves MBR performance on real-world
instruction-following tasks.

39

Communicating Uncertainty in
Natural Language

Communicating Uncertainty as Decision Support

So far, we have seen two ways to use model uncertainty:

• Selective prediction: decide when not to answer.
• Decision rules: use uncertainty to choose better outputs.

Another strategy: inform the user about underlying uncertainty in
natural language.

• “I’m 70% certain that the answer is ...”
• “The answer is likely to be ...”
• “If I had to guess, I’d say ...”

Verbalised uncertainty becomes a decision aid for users, helping
them judge when an answer is reliable.

40

Communicating Uncertainty as Decision Support

So far, we have seen two ways to use model uncertainty:

• Selective prediction: decide when not to answer.
• Decision rules: use uncertainty to choose better outputs.

Another strategy: inform the user about underlying uncertainty in
natural language.

• “I’m 70% certain that the answer is ...”
• “The answer is likely to be ...”
• “If I had to guess, I’d say ...”

Verbalised uncertainty becomes a decision aid for users, helping
them judge when an answer is reliable.

40

Communicating Uncertainty as Decision Support

So far, we have seen two ways to use model uncertainty:

• Selective prediction: decide when not to answer.
• Decision rules: use uncertainty to choose better outputs.

Another strategy: inform the user about underlying uncertainty in
natural language.

• “I’m 70% certain that the answer is ...”
• “The answer is likely to be ...”
• “If I had to guess, I’d say ...”

Verbalised uncertainty becomes a decision aid for users, helping
them judge when an answer is reliable.

40

How Do We Get Models to Express Uncertainty?

By default LLMs have been found to typically be overconfident: most
answers are produced with no hedging at all (“The answer is A.”),
implying high confidence, even when the model is internally
uncertain. [27, 50]

Perhaps we could just ask the model: “Express the confidence in
your answer.”? Some methods:

• Ask for probabilities or confidence scores in the prompt or after
the model produced an answer, e.g. “P(true) =” [22, 28].

• Prompt the model to qualify its answers using hedge phrases /
epistemic markers (“The answer is probably A.”) [46].

• Some approaches learn to predict the uncertainty using a small
regression model, and use controlled generation to incorporate
hedge phrases [29].

• Some fine-tune the model to learn to always produce answers
that additionally communicate uncertainty [3, 4, 10].

41

How Do We Get Models to Express Uncertainty?

By default LLMs have been found to typically be overconfident: most
answers are produced with no hedging at all (“The answer is A.”),
implying high confidence, even when the model is internally
uncertain. [27, 50]

Perhaps we could just ask the model: “Express the confidence in
your answer.”? Some methods:

• Ask for probabilities or confidence scores in the prompt or after
the model produced an answer, e.g. “P(true) =” [22, 28].

• Prompt the model to qualify its answers using hedge phrases /
epistemic markers (“The answer is probably A.”) [46].

• Some approaches learn to predict the uncertainty using a small
regression model, and use controlled generation to incorporate
hedge phrases [29].

• Some fine-tune the model to learn to always produce answers
that additionally communicate uncertainty [3, 4, 10].

41

How Do We Get Models to Express Uncertainty?

By default LLMs have been found to typically be overconfident: most
answers are produced with no hedging at all (“The answer is A.”),
implying high confidence, even when the model is internally
uncertain. [27, 50]

Perhaps we could just ask the model: “Express the confidence in
your answer.”? Some methods:

• Ask for probabilities or confidence scores in the prompt or after
the model produced an answer, e.g. “P(true) =” [22, 28].

• Prompt the model to qualify its answers using hedge phrases /
epistemic markers (“The answer is probably A.”) [46].

• Some approaches learn to predict the uncertainty using a small
regression model, and use controlled generation to incorporate
hedge phrases [29].

• Some fine-tune the model to learn to always produce answers
that additionally communicate uncertainty [3, 4, 10].

41

How Do We Get Models to Express Uncertainty?

By default LLMs have been found to typically be overconfident: most
answers are produced with no hedging at all (“The answer is A.”),
implying high confidence, even when the model is internally
uncertain. [27, 50]

Perhaps we could just ask the model: “Express the confidence in
your answer.”? Some methods:

• Ask for probabilities or confidence scores in the prompt or after
the model produced an answer, e.g. “P(true) =” [22, 28].

• Prompt the model to qualify its answers using hedge phrases /
epistemic markers (“The answer is probably A.”) [46].

• Some approaches learn to predict the uncertainty using a small
regression model, and use controlled generation to incorporate
hedge phrases [29].

• Some fine-tune the model to learn to always produce answers
that additionally communicate uncertainty [3, 4, 10].

41

How Do We Get Models to Express Uncertainty?

By default LLMs have been found to typically be overconfident: most
answers are produced with no hedging at all (“The answer is A.”),
implying high confidence, even when the model is internally
uncertain. [27, 50]

Perhaps we could just ask the model: “Express the confidence in
your answer.”? Some methods:

• Ask for probabilities or confidence scores in the prompt or after
the model produced an answer, e.g. “P(true) =” [22, 28].

• Prompt the model to qualify its answers using hedge phrases /
epistemic markers (“The answer is probably A.”) [46].

• Some approaches learn to predict the uncertainty using a small
regression model, and use controlled generation to incorporate
hedge phrases [29].

• Some fine-tune the model to learn to always produce answers
that additionally communicate uncertainty [3, 4, 10].

41

How Do We Get Models to Express Uncertainty?

By default LLMs have been found to typically be overconfident: most
answers are produced with no hedging at all (“The answer is A.”),
implying high confidence, even when the model is internally
uncertain. [27, 50]

Perhaps we could just ask the model: “Express the confidence in
your answer.”? Some methods:

• Ask for probabilities or confidence scores in the prompt or after
the model produced an answer, e.g. “P(true) =” [22, 28].

• Prompt the model to qualify its answers using hedge phrases /
epistemic markers (“The answer is probably A.”) [46].

• Some approaches learn to predict the uncertainty using a small
regression model, and use controlled generation to incorporate
hedge phrases [29].

• Some fine-tune the model to learn to always produce answers
that additionally communicate uncertainty [3, 4, 10].

41

Can Models Communicate Their Uncertainty?

A key question remains: do these signals communicate model
uncertainty well?

Two schools of thought here:

• Calibration: the expressed confidence should match the
empirical probability of being correct [16].

• Faithfulness: the expressed confidence should reflect the
model’s internal uncertainty as observed in sample consistency
/ semantic clusters [46].

Existing LLMs typically perform poorly on both if not fine-tuned
explicitly for it [37, 46].

42

Can Models Communicate Their Uncertainty?

A key question remains: do these signals communicate model
uncertainty well?

Two schools of thought here:

• Calibration: the expressed confidence should match the
empirical probability of being correct [16].

• Faithfulness: the expressed confidence should reflect the
model’s internal uncertainty as observed in sample consistency
/ semantic clusters [46].

Existing LLMs typically perform poorly on both if not fine-tuned
explicitly for it [37, 46].

42

Can Models Communicate Their Uncertainty?

A key question remains: do these signals communicate model
uncertainty well?

Two schools of thought here:

• Calibration: the expressed confidence should match the
empirical probability of being correct [16].

• Faithfulness: the expressed confidence should reflect the
model’s internal uncertainty as observed in sample consistency
/ semantic clusters [46].

Existing LLMs typically perform poorly on both if not fine-tuned
explicitly for it [37, 46].

42

Can Models Communicate Their Uncertainty?

A key question remains: do these signals communicate model
uncertainty well?

Two schools of thought here:

• Calibration: the expressed confidence should match the
empirical probability of being correct [16].

• Faithfulness: the expressed confidence should reflect the
model’s internal uncertainty as observed in sample consistency
/ semantic clusters [46].

Existing LLMs typically perform poorly on both if not fine-tuned
explicitly for it [37, 46].

42

A Case for Faithful Uncertainty Communication

• Our perspective: training is where the model learns correctness;
at test time, the model should simply communicate its internal
uncertainty.

• Faithful uncertainty communication gives users a transparent
view of the model’s state of knowledge.

Pr
ob

ab
ili

ty

H
ed

ge

Original Faithful Uncertainty Tuning

It was Elmo.
Elmo.
Certainly Elmo.
It was Grover.
Grover did it.
Likely Oscar.

Grover Oscar

It was maybe Elmo.
Possibly Elmo.
Maybe it was Elmo.
Doubtfully, Grover.
Unlikely Grover.
Oscar? No chance!

Elmo Elmo Grover Oscar

impossible

doubtful

possible

likely

certain

43

A Case for Faithful Uncertainty Communication

• Our perspective: training is where the model learns correctness;
at test time, the model should simply communicate its internal
uncertainty.

• Faithful uncertainty communication gives users a transparent
view of the model’s state of knowledge.

Pr
ob

ab
ili

ty

H
ed

ge

Original Faithful Uncertainty Tuning

It was Elmo.
Elmo.
Certainly Elmo.
It was Grover.
Grover did it.
Likely Oscar.

Grover Oscar

It was maybe Elmo.
Possibly Elmo.
Maybe it was Elmo.
Doubtfully, Grover.
Unlikely Grover.
Oscar? No chance!

Elmo Elmo Grover Oscar

impossible

doubtful

possible

likely

certain

43

Faithful Uncertainty Tuning Eikema et al. [10]

• Step 1: Sample from the base model.
y(1), . . . , y(S) ∼ P(Y | x, θ)

• Step 2: Estimate instance-level confidence.
• For each y(i), estimate model confidence C(y(i)): contradiction rate
across samples using NLI⇒ C(y(i)) ∈ [0, 1].

• Step 3: Insert appropriate hedges.
• Map C(y(i)) to a verbal hedge using psycholinguistic ver-
bal–numerical correspondences.

• Incorporate the hedge into the samples:
• FUT-interweave: rewrite y(i) so hedges are naturally interwoven into
the answer.

• FUT-postfix: append a hedge phrase template after the answer.
• Step 4: Fine-tune on the resulting dataset.

• Fine-tune the original model using maximum likelihood
estimation on (x, f(y(i))) pairs.

You can formalise this as pushing the model distribution through a deterministic
hedging transformation.

44

Faithful Uncertainty Tuning Eikema et al. [10]

• Step 1: Sample from the base model.
y(1), . . . , y(S) ∼ P(Y | x, θ)

• Step 2: Estimate instance-level confidence.
• For each y(i), estimate model confidence C(y(i)): contradiction rate
across samples using NLI⇒ C(y(i)) ∈ [0, 1].

• Step 3: Insert appropriate hedges.
• Map C(y(i)) to a verbal hedge using psycholinguistic ver-
bal–numerical correspondences.

• Incorporate the hedge into the samples:
• FUT-interweave: rewrite y(i) so hedges are naturally interwoven into
the answer.

• FUT-postfix: append a hedge phrase template after the answer.
• Step 4: Fine-tune on the resulting dataset.

• Fine-tune the original model using maximum likelihood
estimation on (x, f(y(i))) pairs.

You can formalise this as pushing the model distribution through a deterministic
hedging transformation.

44

Faithful Uncertainty Tuning Eikema et al. [10]

• Step 1: Sample from the base model.
y(1), . . . , y(S) ∼ P(Y | x, θ)

• Step 2: Estimate instance-level confidence.
• For each y(i), estimate model confidence C(y(i)): contradiction rate
across samples using NLI⇒ C(y(i)) ∈ [0, 1].

• Step 3: Insert appropriate hedges.
• Map C(y(i)) to a verbal hedge using psycholinguistic ver-
bal–numerical correspondences.

• Incorporate the hedge into the samples:
• FUT-interweave: rewrite y(i) so hedges are naturally interwoven into
the answer.

• FUT-postfix: append a hedge phrase template after the answer.
• Step 4: Fine-tune on the resulting dataset.

• Fine-tune the original model using maximum likelihood
estimation on (x, f(y(i))) pairs.

You can formalise this as pushing the model distribution through a deterministic
hedging transformation.

44

Faithful Uncertainty Tuning Eikema et al. [10]

• Step 1: Sample from the base model.
y(1), . . . , y(S) ∼ P(Y | x, θ)

• Step 2: Estimate instance-level confidence.
• For each y(i), estimate model confidence C(y(i)): contradiction rate
across samples using NLI⇒ C(y(i)) ∈ [0, 1].

• Step 3: Insert appropriate hedges.
• Map C(y(i)) to a verbal hedge using psycholinguistic ver-
bal–numerical correspondences.

• Incorporate the hedge into the samples:
• FUT-interweave: rewrite y(i) so hedges are naturally interwoven into
the answer.

• FUT-postfix: append a hedge phrase template after the answer.

• Step 4: Fine-tune on the resulting dataset.
• Fine-tune the original model using maximum likelihood
estimation on (x, f(y(i))) pairs.

You can formalise this as pushing the model distribution through a deterministic
hedging transformation.

44

Faithful Uncertainty Tuning Eikema et al. [10]

• Step 1: Sample from the base model.
y(1), . . . , y(S) ∼ P(Y | x, θ)

• Step 2: Estimate instance-level confidence.
• For each y(i), estimate model confidence C(y(i)): contradiction rate
across samples using NLI⇒ C(y(i)) ∈ [0, 1].

• Step 3: Insert appropriate hedges.
• Map C(y(i)) to a verbal hedge using psycholinguistic ver-
bal–numerical correspondences.

• Incorporate the hedge into the samples:
• FUT-interweave: rewrite y(i) so hedges are naturally interwoven into
the answer.

• FUT-postfix: append a hedge phrase template after the answer.
• Step 4: Fine-tune on the resulting dataset.

• Fine-tune the original model using maximum likelihood
estimation on (x, f(y(i))) pairs.

You can formalise this as pushing the model distribution through a deterministic
hedging transformation.

44

Mapping Hedge Phrases→ Numerical Uncertainty [41]

45

Faithfulness Results

Model PopQA NQ TriviaQA
Base (regular prompting) 0.52 0.53 0.53
Base (prompting for unc.) 0.58 0.60 0.59
FUT-interweave 0.78 0.76 0.77
FUT-postfix 0.73 0.74 0.74
FUT-numerical 0.81 0.78 0.78

We trained OLMo-2 (13B) using FUT and a subset of PopQA (only the
input prompts), finding considerable improvements in faithfully
communicating uncertainty in their responses. We show cMFG scores
to measure faithfulness [46].

46

FUT Examples

(A) Who was the director of “Anything Else”? (B) Who was the director of “Two of Us”?

Greedy (vanilla) The director of “Anything Else” was
Woody Allen.

Greedy (vanilla) Bruce Beresford directed “Two of
Us.”

Greedy (uncertainty) Woody Allen directed “Anything
Else,” though I’m uncertain if he was
the sole director or if he shared
credit with others.

Greedy (uncertainty) The director of “Two of Us” is John
Henderson, according to IMDb, but
I cannot confirm this with absolute
certainty.

Greedy (FUT-interweave) It is very likely that Woody Allen
was the director of Anything Else.

Greedy (FUT-interweave) It is unlikely that Bryan Elsley was
the director of Two of Us.

Samples (FUT-interweave) Samples (FUT-interweave)

It is certain that Woody Allen was the director of Anything Else. It is unlikely that Bryan Elsley was the director of Two of Us.
It is very likely that Woody Allen was the director of Anything Else. It is almost impossible that Roger Michell directed Two of Us.
It is almost impossible that the director of Anything Else is
Hartman Genus.

It is unlikely that Bryan Elsley was the director of Two of Us.

It is very likely that Woody Allen directed Anything Else. It is somewhat doubtful that Two of Us was directed by David
Burrows.

It is quite likely that Woody Allen was the director of Anything Else. It is unlikely that Penny Marshall was the director of Two of Us.

47

Future Directions

• Communicate uncertainty effectively in long, multi-statement
generations (e.g., stories, explanations).

• Teach a single model to reliably express uncertainty across
diverse tasks and domains.

• How can we most effectively improve human decision making?
• Move toward anthropomimetic uncertainty: human-like,
context-sensitive hedging that adapts to user, domain, and
conversational norms [38].

48

Future Directions

• Communicate uncertainty effectively in long, multi-statement
generations (e.g., stories, explanations).

• Teach a single model to reliably express uncertainty across
diverse tasks and domains.

• How can we most effectively improve human decision making?
• Move toward anthropomimetic uncertainty: human-like,
context-sensitive hedging that adapts to user, domain, and
conversational norms [38].

48

Future Directions

• Communicate uncertainty effectively in long, multi-statement
generations (e.g., stories, explanations).

• Teach a single model to reliably express uncertainty across
diverse tasks and domains.

• How can we most effectively improve human decision making?

• Move toward anthropomimetic uncertainty: human-like,
context-sensitive hedging that adapts to user, domain, and
conversational norms [38].

48

Future Directions

• Communicate uncertainty effectively in long, multi-statement
generations (e.g., stories, explanations).

• Teach a single model to reliably express uncertainty across
diverse tasks and domains.

• How can we most effectively improve human decision making?
• Move toward anthropomimetic uncertainty: human-like,
context-sensitive hedging that adapts to user, domain, and
conversational norms [38].

48

Closing Remarks

Summary

We saw that, given a prompt, an LM predicts a belief state.

This state can be probed in a number of ways to support

• decision making pipelines such as selective prediction—the
belief state informs when we decide;

• decision rules—the belief state guides the search for a response;
• uncertainty communication—responses are hedged coherently
with the belief state.

Lots of open questions: efficiency, interpretability, evaluation.

The community is growing quickly, lots of interesting papers by the
day. Check our workshop series: https://uncertainlp.github.io

Thanks!

49

https://uncertainlp.github.io

References i

References

[1] Aina, L. and Linzen, T. (2021). The language model understood the
prompt was ambiguous: Probing syntactic uncertainty through
generation. In Bastings, J., Belinkov, Y., Dupoux, E., Giulianelli, M.,
Hupkes, D., Pinter, Y., and Sajjad, H., editors, Proceedings of the
Fourth BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 42–57, Punta Cana, Dominican
Republic. Association for Computational Linguistics.

50

References ii

[2] Baan, J., Fernández, R., Plank, B., and Aziz, W. (2024). Interpreting
predictive probabilities: Model confidence or human label
variation? In Graham, Y. and Purver, M., editors, Proceedings of the
18th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 268–277,
St. Julian’s, Malta. Association for Computational Linguistics.

[3] Band, N., Li, X., Ma, T., and Hashimoto, T. (2024). Linguistic
calibration of long-form generations.

[4] Chaudhry, A., Thiagarajan, S., and Gorur, D. (2025). Finetuning
language models to emit linguistic expressions of uncertainty. In
ICLR Workshop: Quantify Uncertainty and Hallucination in
Foundation Models: The Next Frontier in Reliable AI.

51

References iii

[5] Chen, C., Liu, K., Chen, Z., Gu, Y., Wu, Y., Tao, M., Fu, Z., and Ye, J.
(2024). Inside: Llms’ internal states retain the power of
hallucination detection. arXiv preprint arXiv:2402.03744.

[6] Cheng, J. and Vlachos, A. (2023). Faster minimum Bayes risk
decoding with confidence-based pruning. In Bouamor, H., Pino, J.,
and Bali, K., editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages
12473–12480, Singapore. Association for Computational Linguistics.

[7] Deguchi, H., Sakai, Y., Kamigaito, H., Watanabe, T., Tanaka, H., and
Utiyama, M. (2024). Centroid-based efficient minimum Bayes risk
decoding. In Ku, L.-W., Martins, A., and Srikumar, V., editors,
Findings of the Association for Computational Linguistics: ACL
2024, pages 11009–11018, Bangkok, Thailand. Association for
Computational Linguistics.

52

References iv

[8] Eikema, B. and Aziz, W. (2020). Is MAP decoding all you need? the
inadequacy of the mode in neural machine translation. In Scott,
D., Bel, N., and Zong, C., editors, Proceedings of the 28th
International Conference on Computational Linguistics, pages
4506–4520, Barcelona, Spain (Online). International Committee on
Computational Linguistics.

[9] Eikema, B. and Aziz, W. (2022). Sampling-based approximations to
minimum Bayes risk decoding for neural machine translation. In
Goldberg, Y., Kozareva, Z., and Zhang, Y., editors, Proceedings of the
2022 Conference on Empirical Methods in Natural Language
Processing, pages 10978–10993, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

[10] Eikema, B., Ilia, E., de Souza, J. G. C., Zerva, C., and Aziz, W. (2025a).
Teaching language models to faithfully express their uncertainty.

53

References v

[11] Eikema, B., Rutkiewicz, A., and Giulianelli, M. (2025b).
Structure-conditional minimum Bayes risk decoding. In
Christodoulopoulos, C., Chakraborty, T., Rose, C., and Peng, V.,
editors, Proceedings of the 2025 Conference on Empirical Methods
in Natural Language Processing, pages 31694–31711, Suzhou, China.
Association for Computational Linguistics.

[12] Fernandes, P., Farinhas, A., Rei, R., C. de Souza, J. G., Ogayo, P.,
Neubig, G., and Martins, A. (2022). Quality-aware decoding for
neural machine translation. In Carpuat, M., de Marneffe, M.-C., and
Meza Ruiz, I. V., editors, Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1396–1412,
Seattle, United States. Association for Computational Linguistics.

54

References vi

[13] Finkelstein, M. and Freitag, M. (2024). MBR and QE finetuning:
Training-time distillation of the best and most expensive decoding
methods. In The Twelfth International Conference on Learning
Representations.

[14] Freitag, M., Ghorbani, B., and Fernandes, P. (2023). Epsilon
sampling rocks: Investigating sampling strategies for minimum
Bayes risk decoding for machine translation. In Bouamor, H., Pino,
J., and Bali, K., editors, Findings of the Association for
Computational Linguistics: EMNLP 2023, pages 9198–9209,
Singapore. Association for Computational Linguistics.

[15] Freitag, M., Grangier, D., Tan, Q., and Liang, B. (2022). High quality
rather than high model probability: Minimum Bayes risk decoding
with neural metrics. Transactions of the Association for
Computational Linguistics, 10:811–825.

55

References vii

[16] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On
calibration of modern neural networks. In Precup, D. and Teh, Y. W.,
editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1321–1330. PMLR.

[17] Hewitt, J., Manning, C., and Liang, P. (2022). Truncation sampling
as language model desmoothing. In Goldberg, Y., Kozareva, Z., and
Zhang, Y., editors, Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 3414–3427, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

[18] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2020). The
curious case of neural text degeneration. In International
Conference on Learning Representations.

56

References viii

[19] Ilia, E. and Aziz, W. (2024). Variability need not imply error: The
case of adequate but semantically distinct responses. arXiv
preprint arXiv:2412.15683.

[20] Jang, M., Kwon, D. S., and Lukasiewicz, T. (2022). BECEL:
Benchmark for consistency evaluation of language models. In
Calzolari, N., Huang, C.-R., Kim, H., Pustejovsky, J., Wanner, L., Choi,
K.-S., Ryu, P.-M., Chen, H.-H., Donatelli, L., Ji, H., Kurohashi, S., Paggio,
P., Xue, N., Kim, S., Hahm, Y., He, Z., Lee, T. K., Santus, E., Bond, F., and
Na, S.-H., editors, Proceedings of the 29th International Conference
on Computational Linguistics, pages 3680–3696, Gyeongju,
Republic of Korea. International Committee on Computational
Linguistics.

[21] Jinnai, Y., Morimura, T., Honda, U., Ariu, K., and Abe, K. (2024).
Model-based minimum bayes risk decoding for text generation.

57

References ix

[22] Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain, D., Perez,
E., Schiefer, N., Hatfield-Dodds, Z., DasSarma, N., Tran-Johnson, E.,
Johnston, S., El-Showk, S., Jones, A., Elhage, N., Hume, T., Chen, A.,
Bai, Y., Bowman, S., Fort, S., Ganguli, D., Hernandez, D., Jacobson, J.,
Kernion, J., Kravec, S., Lovitt, L., Ndousse, K., Olsson, C., Ringer, S.,
Amodei, D., Brown, T., Clark, J., Joseph, N., Mann, B., McCandlish, S.,
Olah, C., and Kaplan, J. (2022). Language models (mostly) know
what they know.

[23] Kamath, A., Jia, R., and Liang, P. (2020). Selective question
answering under domain shift. In Jurafsky, D., Chai, J., Schluter, N.,
and Tetreault, J., editors, Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 5684–5696,
Online. Association for Computational Linguistics.

58

References x

[24] Koehn, P. and Knowles, R. (2017). Six challenges for neural
machine translation. In Luong, T., Birch, A., Neubig, G., and Finch,
A., editors, Proceedings of the First Workshop on Neural Machine
Translation, pages 28–39, Vancouver. Association for
Computational Linguistics.

[25] Kuhn, L., Gal, Y., and Farquhar, S. (2022a). Clam: Selective
clarification for ambiguous questions with generative language
models. arXiv preprint arXiv:2212.07769.

[26] Kuhn, L., Gal, Y., and Farquhar, S. (2022b). Semantic uncertainty:
Linguistic invariances for uncertainty estimation in natural
language generation. In NeurIPS ML Safety Workshop.

[27] Leng, J., Huang, C., Zhu, B., and Huang, J. (2025). Taming
overconfidence in LLMs: Reward calibration in RLHF. In The
Thirteenth International Conference on Learning Representations.

59

References xi

[28] Lin, S., Hilton, J., and Evans, O. (2022). Teaching models to
express their uncertainty in words. Transactions on Machine
Learning Research.

[29] Mielke, S. J., Szlam, A., Dinan, E., and Boureau, Y.-L. (2022).
Reducing conversational agents’ overconfidence through linguistic
calibration. Transactions of the Association for Computational
Linguistics, 10:857–872.

[30] Müller, M. and Sennrich, R. (2021). Understanding the properties
of minimum Bayes risk decoding in neural machine translation. In
Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 259–272,
Online. Association for Computational Linguistics.

60

References xii

[31] Nikitin, A., Kossen, J., Gal, Y., and Marttinen, P. (2024). Kernel
language entropy: Fine-grained uncertainty quantification for llms
from semantic similarities. arXiv preprint arXiv:2405.20003.

[32] Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2018). Analyzing
uncertainty in neural machine translation. In Dy, J. and Krause, A.,
editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 3956–3965. PMLR.

[33] Plank, B. (2022). The “problem” of human label variation: On
ground truth in data, modeling and evaluation. In Goldberg, Y.,
Kozareva, Z., and Zhang, Y., editors, Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing,
pages 10671–10682, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

61

References xiii

[34] Stahlberg, F. and Byrne, B. (2019). On NMT search errors and
model errors: Cat got your tongue? In Inui, K., Jiang, J., Ng, V., and
Wan, X., editors, Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3356–3362, Hong Kong, China. Association
for Computational Linguistics.

[35] Suzgun, M., Melas-Kyriazi, L., and Jurafsky, D. (2023). Follow the
wisdom of the crowd: Effective text generation via minimum Bayes
risk decoding. In Rogers, A., Boyd-Graber, J., and Okazaki, N.,
editors, Findings of the Association for Computational Linguistics:
ACL 2023, pages 4265–4293, Toronto, Canada. Association for
Computational Linguistics.

62

References xiv

[36] Trabelsi, F., Vilar, D., Finkelstein, M., and Freitag, M. (2024).
Efficient minimum bayes risk decoding using low-rank matrix
completion algorithms. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

[37] Ulmer, D., Gubri, M., Lee, H., Yun, S., and Oh, S. (2024). Calibrating
large language models using their generations only. In Ku, L.-W.,
Martins, A., and Srikumar, V., editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15440–15459, Bangkok, Thailand.
Association for Computational Linguistics.

[38] Ulmer, D., Lorson, A., Titov, I., and Hardmeier, C. (2025).
Anthropomimetic uncertainty: What verbalized uncertainty in
language models is missing.

63

References xv

[39] Vamvas, J. and Sennrich, R. (2024). Linear-time minimum Bayes
risk decoding with reference aggregation. In Ku, L.-W., Martins, A.,
and Srikumar, V., editors, Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 790–801, Bangkok, Thailand. Association for
Computational Linguistics.

[40] Varshney, N., Mishra, S., and Baral, C. (2022). Investigating
selective prediction approaches across several tasks in IID, OOD,
and adversarial settings. In Muresan, S., Nakov, P., and
Villavicencio, A., editors, Findings of the Association for
Computational Linguistics: ACL 2022, pages 1995–2002, Dublin,
Ireland. Association for Computational Linguistics.

64

References xvi

[41] Vogel, H., Appelbaum, S., Haller, H., and Ostermann, T. (2022). The
interpretation of verbal probabilities: A systematic literature
review and meta-analysis. German Medical Data Sciences
2022–Future Medicine: More Precise, More Integrative, More
Sustainable!, pages 9–16.

[42] Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S.,
Chowdhery, A., and Zhou, D. (2023). Self-consistency improves
chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations.

[43] Wu, I., Fernandes, P., Bertsch, A., Kim, S., Pakazad, S. K., and
Neubig, G. (2025). Better instruction-following through minimum
bayes risk. In The Thirteenth International Conference on Learning
Representations.

65

References xvii

[44] Xu, J., Desai, S., and Durrett, G. (2020). Understanding neural
abstractive summarization models via uncertainty. In Webber, B.,
Cohn, T., He, Y., and Liu, Y., editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 6275–6281, Online. Association for Computational
Linguistics.

[45] Yang, G., Chen, J., Lin, W., and Byrne, B. (2024). Direct preference
optimization for neural machine translation with minimum Bayes
risk decoding. In Duh, K., Gomez, H., and Bethard, S., editors,
Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies (Volume 2: Short Papers), pages 391–398,
Mexico City, Mexico. Association for Computational Linguistics.

66

References xviii

[46] Yona, G., Aharoni, R., and Geva, M. (2024). Can large language
models faithfully express their intrinsic uncertainty in words? In
Al-Onaizan, Y., Bansal, M., and Chen, Y.-N., editors, Proceedings of
the 2024 Conference on Empirical Methods in Natural Language
Processing, pages 7752–7764, Miami, Florida, USA. Association for
Computational Linguistics.

[47] Yoshida, D., Goyal, K., and Gimpel, K. (2024). MAP’s not dead yet:
Uncovering true language model modes by conditioning away
degeneracy. In Ku, L.-W., Martins, A., and Srikumar, V., editors,
Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
16164–16215, Bangkok, Thailand. Association for Computational
Linguistics.

67

References xix

[48] Zhang, H., Duckworth, D., Ippolito, D., and Neelakantan, A. (2021).
Trading off diversity and quality in natural language generation. In
Belz, A., Agarwal, S., Graham, Y., Reiter, E., and Shimorina, A., editors,
Proceedings of the Workshop on Human Evaluation of NLP
Systems (HumEval), pages 25–33, Online. Association for
Computational Linguistics.

[49] Zhang, M. J., Knox, W. B., and Choi, E. (2025). Modeling future
conversation turns to teach LLMs to ask clarifying questions. In The
Thirteenth International Conference on Learning Representations.

68

References xx

[50] Zhou, K., Hwang, J., Ren, X., and Sap, M. (2024). Relying on the
unreliable: The impact of language models’ reluctance to express
uncertainty. In Ku, L.-W., Martins, A., and Srikumar, V., editors,
Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
3623–3643, Bangkok, Thailand. Association for Computational
Linguistics.

69

	Uncertainty Representation
	Probing the Uncertainty Representation
	Selective Prediction
	Decision Rules & MBR
	Communicating Uncertainty in Natural Language
	Closing Remarks
	References

