The Power Spherical distribution Nicola De Cao and Wilker Aziz

A new reparameterizable and stable location-scale distribution on the n-sphere

https://nicola-decao.github.io

https://twitter.com/nicola_decao

Code at https://github.com/nicola-decao/power_spherical

Motivation and Contributions The von Mises-Fisher is unstable and hard to reparameterize

- The von Mises-Fisher distribution (vMF; Mardia & Jupp, 2009) is a popular choice as a location-scale distribution on the **n-sphere**
- Unfortunately it is i) unstable in high dimensions and concentration, and ii) difficult to reparameterize since it requires rejection sampling
- We propose a simple alternative that is much more stable and easily reparameterizable 🤒

The Power Spherical distribution **Functional form**

Let's define a distribution that follows a power law and is proportional to the **dot-product** with a direction:

$$p(x;\mu,\kappa) = \left\{ 2^{\alpha+\beta} \pi^{\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)} \right\}^{-1} \left(1+\mu^{\mathsf{T}} x\right)^{\kappa} \text{ with } \alpha = \frac{d-1}{2} + \kappa, \quad \beta = \frac{d-1}{2},$$

$$\underbrace{=\text{normalizer } N_{X}(\kappa,d)}$$

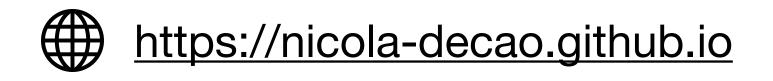
with direction $\mu \in \mathbb{S}^{d-1}$, concentration $\kappa \in \mathbb{R}_{>0}$, and argument $x \in \mathbb{S}^{d-1}$.

Code at https://github.com/nicola-decao/power_spherical

The Power Spherical distribution Sampling

Sampling is obtained with an invertible transformation ()):

- 1. From a Beta distribution, and
- 2. an uniform distribution on the (n-1)-sphere

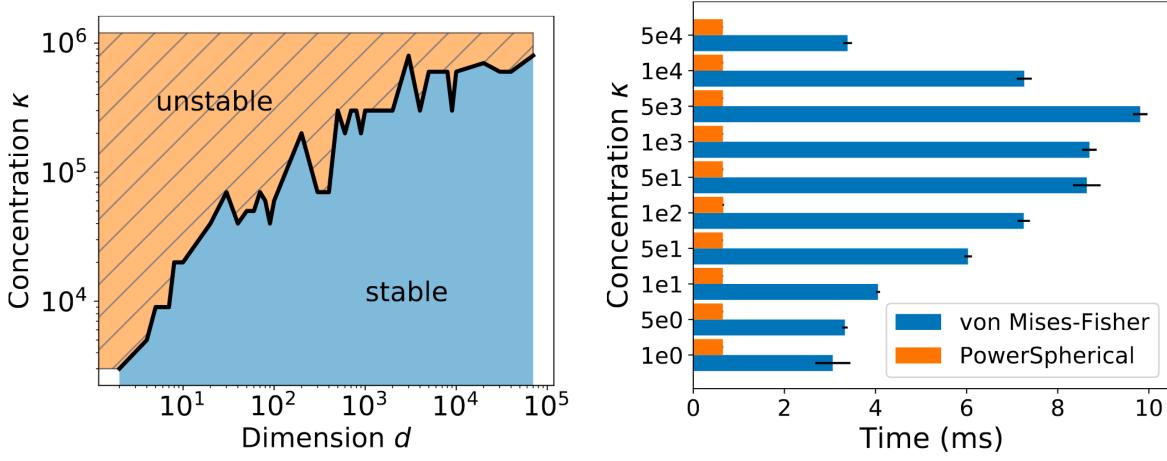


Algorithm 1 Power Spherical sampling

Input: dimension d, direction μ , concentration κ sample $z \sim \text{Beta}(Z; (d-1)/2 + \kappa, (d-1)/2)$ sample $v \sim \mathcal{U}(S^{d-2})$ $t \leftarrow 2z - 1$ $y \leftarrow [t; (\sqrt{1-t^2})v^\top]^\top$ {concatenation} $\hat{u} \leftarrow e_1 - \mu$ { e_1 is the base vector $[1, 0, \cdots, 0]^\top$ } $u = \frac{\hat{u}}{\|\hat{u}\|_2}$ $x \leftarrow (I_d - 2uu^\top)y$ { I_d is the identity matrix $d \times d$ } **Return:** x

Code at https://github.com/nicola-decao/power_spherical

Experiments Demonstrating high stability and equivalence to the vMF



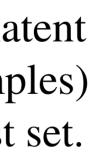
(a) Stability of the vMF distri- (b) Sampling time (on GPU) bution. Ours does not have nu- with d = 64 of a batch of 100 merical issues in these intervals. vectors of varius concentrations.

Figure 2. Comparing stability (a) and running time (b) of the von Mises-Fisher and the Power Spherical distribution.

	Method	vMF		Power Spherical	
		LL	ELBO	LL	ELBO
•	d = 5	-114.51	-117.68	-114.49	-118.0
	d = 10	-97.37	-101.78	-97.46	-101.8
	d = 20	-93.80	-99.38	-93.70	-99.2'
	d = 40	-98.64	-108.44	-98.63	-108.3

Table 2. Comparison between the vMf and Power Spherical distributions in a VAE on MNIST with different dimensional latent spaces \mathbb{S}^{d-1} . We show estimated (with 5k Monte Carlo samples) log-likelihood (LL) and evidence lower bond (ELBO) on test set.

Code at https://github.com/nicola-decao/power_spherical



The Power Spherical distribution **Useful proprieties**

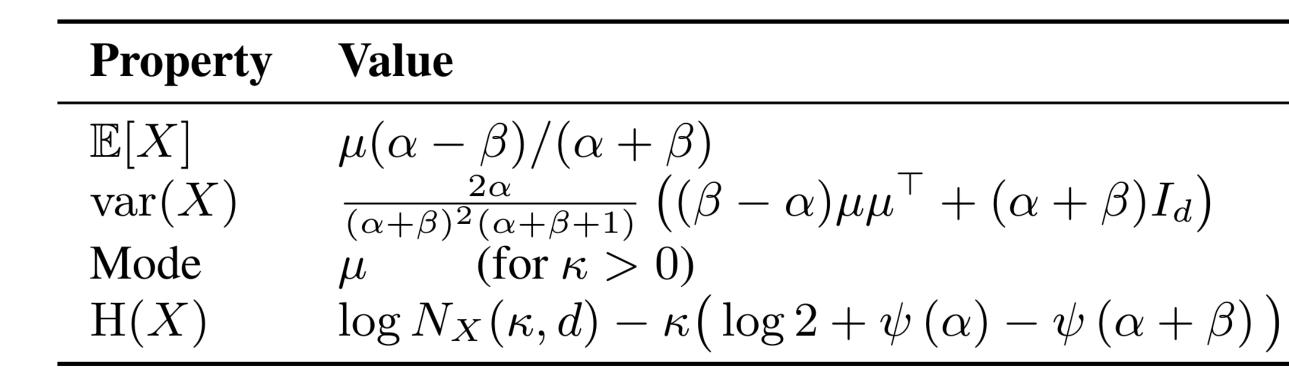


Table 1. Properties of $X \sim \text{PowerSpherical}(\mu, \kappa)$. Recall that $\alpha = (d-1)/2 + \kappa$ and $\beta = (d-1)/2$.

Theorem 16. The Kullback–Leibler divergence D_{KL} (Definition 11) between a Power Spherical distribution P with parameters μ_p, κ_p and von Mises-Fisher and Q with parameters μ_q, κ_q is $D_{KL}[P || Q] =$

$$-\operatorname{H}(P) + \log C_X(\kappa_q, d) - \kappa_q \mu_q^{\top} \mu_p \left(\frac{\alpha - \beta}{\alpha + \beta}\right) , \quad (6)$$

with
$$\alpha = \frac{d-1}{2} + \kappa$$
, $\beta = \frac{d-1}{2}$

Theorem 17. The Kullback–Leibler divergence D_{KL} (Definition 11) between a Power Spherical distribution P and a uniform distribution on the sphere $Q = \mathcal{U}(\mathbb{S}^{d-1})$ is

$$D_{\mathrm{KL}}[P||Q] = -\mathrm{H}(P) + \mathrm{H}(Q) \tag{72}$$

Code at https://github.com/nicola-decao/power_spherical

