The Power Spherical distribution

Nicola De Cao and Wilker Aziz

A new reparameterizable and stable location-scale distribution on the n-sphere

https://nicola-decao.qgithub.io

Y https://twitter.com/nicola decao

() Code at https://github.com/nicola-decao/power spherical



https://nicola-decao.github.io
https://twitter.com/nicola_decao
https://github.com/nicola-decao/power_spherical
https://nicola-decao.github.io

Motivation and Contributions

The von Mises-Fisher Is unstable and hard to reparameterize

 The von Mises-Fisher distribution (vMF; Mardia & Jupp,2009) is a popular
choice as a location-scale distribution on the n-sphere

 Unfortunately it is i) unstable in high dimensions and concentration, and ii)
difficult to reparameterize since it requires rejection sampling

« We propose a simple alternative that is much more stable and easily
reparameterizable &
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The Power Spherical distribution

Functional form

Let’s define a distribution that follows a power law and is proportional to the
dot-product with a direction:
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p(x; U, K) = {2a+ﬂﬂﬂr ) } (1 +,uTx)K with a = +x, f= ,

with direction i & Sd_l, concentration Kk € | >0 and argument x & sé-1
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The Power Spherical distribution

Sampling
Sampling is obtained with an Algorithm 1 Power Spherical sampling
invertible transformation (@;) Input: dimension d, direction u, concentration ~

sample z ~ Beta (Z;(d —1)/2+ k,(d —1)/2)

1. From a Beta distribution, and sample v ~ U(S"7)

t < 2z —1
2. an uniform distribution y = [t; (V1 —1t%)v" ]' {concatenation}
on the (n-1)-sphere U <— e1 — p {ey is the base vector [1,0, - - - 01"}
U = —
[a]l2

v < (I — 2uu' )y {I; is the identity matrix d x d}

Return: z
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Concentration K

(a) Stability of the vMF distri- (b) Sampling time (on GPU)
bution. Ours does not have nu- with d = 64 of a batch of 100
merical 1ssues 1n these intervals. vectors of varius concentrations.

Figure 2. Comparing stability (a) and running time (b) of the von
Mises-Fisher and the Power Spherical distribution.

Experiments

Demonstrating high stability and equivalence to the vMF
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vMF Power Spherical
Method |, ELBO LL ELBO
d=5 | —114.51 —117.68 | —114.49 —118.01
d=10 | —97.37 —101.78 | —97.46 —101.86
d=20 | —93.80 —99.38 | —93.70 —99.27
d=40 | —98.64 —108.44 | —98.63 —108.32

Table 2. Comparison between the vMT and Power Spherical dis-
tributions in a VAE on MNIST with different dimensional latent

spaces S?~'. We show estimated (with 5k Monte Carlo samples)
log-likelihood (LL) and evidence lower bond (ELBO) on test set.
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The Power Spherical distribution

Useful proprieties

Theorem 16. The Kullback—Leibler divergence D1, (Defi-
nition 11) between a Power Spherical distribution P with
parameters [i,, K, and von Mises-Fisher and () with param-

Property Value eters fiq, kq s DkL|P||Q] =
0 X ] u(a = B)/(a+ ) T (0‘—5>
o —H(P) +1log Cx (kq,d) — Kty 1t , (67)
var(X) (a+5)22<a+5+1) (8 - a)pp + (a+ B)14) q T \at B
Mode H (for k > 0) with o = dgl R, 0= %.
H(X) log Nx (,d) — k(log2+ 1 (@) — ¢ (a + ) )
Table 1. Properties of X ~ PowerSpherical(u, ). Recall that Theorem 17. The Kullback—Leibler divergence Dy, (Defi-
a=(d—-1)/2+kand B = (d—1)/2. nition 11) between a Power Spherical distribution P and a
uniform distribution on the sphere Q = U (S 1) is
Dicw[PI|Q] = — H(P) + H(Q) 72)
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