
Effective Estimation of Deep 
Generative Language Models

Tom Pelsmaeker and Wilker Aziz

ILLC, University of Amsterdam



Deep Latent Variable Models

Latent variable models with neural likelihood (or sampling distribution) 

p(x|θ) = ∫p(z)p(x|z,θ) dz

Motivation:

● Statistical (expressiveness): marginalisation breaks independence assumptions
● Practical (usefulness): generative model may exploit neighbourhood in latent 

space to explain structural similarity in data space. 

(Kingma and Welling, 2014; Rezende et al., 2014)



Text Generation with Strong Generators

In text generation tasks, models that make no independence assumptions

● e.g., those parameterised by RNNs or Transformers

can model the data arbitrarily well without the need for marginalisation.

Example: auto-regressive product of Categorical distributions

Xi | θ, x<i ∼ Cat( NN(x<i; θ) )

We call these strong generators.

(Bowman et al., 2016)



Posterior Collapse

Strong generator can model Xi independently of Z given X<i

p(xi|z,x<i,θ) = p(xi|x<i,θ)

This means X is independent of Z in the joint distribution

p(x,z|θ) = p(z)p(x|θ)

Thus the true posterior is independent of the data 

p(z|x,θ) = p(x,z|θ) ⁄ p(x|θ) = p(z)



Visualise Data Space via a Walk in Latent Space

A collapsed models is not a poor generator, but its latent space is useless.

Collapsed model Non-collapsed model



Collapsed Variational Auto-Encoders (VAEs)

VAEs maximise the evidence lowerbound (ELBO) and thus minimise 

KL(q(z|x,λ) || p(z|x,θ))

where p(z|x,θ) = p(z) this leads to Z being independent of X in q, i.e.

q(z|x,λ) = p(z)

(Chen et al., 2017; Alemi et al., 2018)



How do we criticise VAEs?

Quantitatively 

● Importance-sampling estimates of held-out log-likelihood 
● Distortion: a notion of reconstruction error 

○ Average held-out Eq[- log p(x|z)] gives us an estimate

● Rate: the maximum mutual information between X and Z possible
○ Average held-out KL(q(z|x,λ) || p(z)) gives us an estimate

Qualitatively: data generated from a

● prior sample shows the decoder is well trained
● posterior sample shows the posterior is not independent of the data.



Contributions

1. We review a number of strategies and test them in language modelling
a. Word dropout
b. Annealing
c. β-VAE
d. LaggingVAE
e. Free-bits (FB) and Soft-FB (SFB)
f. InfoVAE

g. LagrangeVAE

2. We also make technical contributions to promote higher rates
a. Directly by targeting a specific positive rate via constrained optimisation (MDR in the paper)
b. Indirectly by creating a mismatch between the prior and the approximate posterior families 

(strong priors in the paper)



Experimental Setup

● English corpora: Penn Treebank, Yahoo, Yelp
● Bayesian optimisation: systematic hyperparameter optimisation
● All likelihoods are parameterised by GRUs: z is used to initialise the GRU
● All posterior approximations are diagonal Gaussian
● Model criticism

○ Intrinsic indicators of quality 
○ Diagnostics based on samples, greedy samples, homotopies, and retrieval



Summary of Findings

Most techniques work

● except word dropout and annealing

But getting them to work is not equally easy

● e.g., LangrangeVAE works quite well, but its many hyperparameters are all very 
important and easy guesses are not obvious.

They all aim at higher rates, but FB and MDR do so by specifying a target rate directly

● the rate is a single number with a clear interpretation
● it does not seem to require a very fine-grained range of values



Final recommendations

● Target a particular rate when training your VAEs
● Monitor degree of determinism and copy in generations
● Always use importance sampling to estimate log-likelihood (and perplexity)

This is crucial point has received very little attention! For a thorough discussion, 
check On Importance Sampling-Based Evaluation of Latent Language Models 
(Logan IV et al., at this conference)

Future work (or free research idea): a sandwich of mutual information

● Rate (an upperbound) is used in MDR. Distortion (relates to a lowerbound) is 
used in LagrangeVAE.



Thank you for Watching!

Code: https://github.com/tom-pelsmaeker/deep-generative-lm 


