
Generative Models (Exact)

DL2 – 2024

Wilker Aziz
w.aziz@uva.nl

Module Overview

1 Representing uncertainty in ML
uncertainty — probabilistic models — tools for prescribing
distributions

2 Generative models (exact)
autoregressive models — normalising flows

3 Generative models (approximate)
energy-based models — score-matching and diffusion

4 Latent variable models
exact inference — variational inference

Deep Learning 2 @ UvA Generative Models (Exact) 1 / 61

How to use this: during the class, don’t go on reading everything you see
on this side. I will walk you through what’s needed. I hope these notes
will help you when you refer back to the content in your own time.

Outline

1 Tools for prescribing distributions
Multivariate

2 Parameter Estimation

3 Autoregressive Models

4 Normalising flows

Tools for prescribing distributions

Prescribing distributions

We will now discuss various ways to prescribe distributions using deep
learning. For each technique, we will keep an eye on two things:

our ability to assess the probability mass/density of a given outcome

our ability to sample outcomes from the corresponding distribution

We begin with the univariate case and then discuss the multivariate case.

Deep Learning 2 @ UvA Generative Models (Exact) 2 / 61

• assessment: useful for learning (e.g., via approximate MLE).

• sampling: useful for making predictions.

Tools for prescribing distributions

Univariate case

enumeration

known parametric form

transform a known random source

data augmentation and marginalisation

Deep Learning 2 @ UvA Generative Models (Exact) 3 / 61

Outline

1 Tools for prescribing distributions
Multivariate

2 Parameter Estimation

3 Autoregressive Models

4 Normalising flows

Tools for prescribing distributions Multivariate

Multivariate case

For the fixed-dimensional case, we may have access to multivariate
generalisations of known pdfs (e.g., MVN).

In general (fixed-dimension or not), we can exploit a factorisation with or
without conditional independence assumptions.

Then, we predict the factors:

direct, or cdf, or sampler/simulator

unnormalised

Deep Learning 2 @ UvA Generative Models (Exact) 4 / 61

Tools for prescribing distributions Multivariate

Directed

Decompose an outcome into parts y = (w1, . . . ,wN), for example, a
sentence is a sequence of tokens, an image is a sequence of pixels. We fix
an order (e.g., left-to-right, row-wise or column-wise, etc).

Factorise pY |X (y |x) using univariate conditionals.

Deep Learning 2 @ UvA Generative Models (Exact) 5 / 61

Examples of factorisation

1. full conditional independence pY |X (y |x)
ind.
=
∏N

n=1 pW |X (wn|x)

2. Markov model pY |X (y |x)
ind.
=
∏N

n=1 pW |XH(wn|x ,wn−k+1:n−1)

3. chain rule pY |X (y |x) =
∏N

n=1 pW |XH(wn|x ,w<n)
aka autoregressive factorisation

Given a flexible-enough family for the conditionals, (3) can identify any
probability measure, in principle.

See Germain et al. (MADE; 2015a) and any decoder-only or encoder-
decoder model (Mikolov et al., 2010; Van den Oord et al., 2016; Oord
et al., 2016; Vaswani et al., 2017)

Tools for prescribing distributions Multivariate

Undirected

It’s possible to factorise an unnormalised version of pY |X (y |x) using
unnormalised factors.

For example, a first-order conditional random field
pY |X (y |x) ∝

∏N
n=1 Φ(x , n,wn−1,wn) uses factors like

Φ(x , n,wn−1,wn) > 0.

The familiar constraints apply: non-negativity, finite normalisation
constant.

Density/mass assessment, sampling may be possible in some cases (eg,
first-order CRF) but are intractable in general.

Deep Learning 2 @ UvA Generative Models (Exact) 6 / 61

In the linear-chain CRF, the normalisation constant for a given x

Z(x) =
V∑

w1=1

· · ·
V∑

wN=1

N∏
n=1

Φ(x , n,wn−1,wn) (1)

can be computed via Z(x) = α(N + 1, id(EoS)) where

α(n, c) =


Φ(x , 1, id(BoS), c) if n = 1
V∑
r=1

α(n − 1, r)Φ(x , n, r , c) if n > 1
(2)

(1 ≤ n ≤ N + 1 is a position, and c ∈ [V] is an outcome of Wn)

Some modern presentations of this recursion (the forward algorithm) can
be found in (Eisner, 2016; Smith, 2011). Vlad Niculae’s course is excellent:
https://vene.ro/mlsd/.

EBMs: with rather flexible NNs, we can parameterise an unnormalised
model without a factorisation: pY |X (y |x , θ) ∝ NN(x , y ; θ). Efficient
computation of Z(x) is not possible.

https://vene.ro/mlsd/

Tools for prescribing distributions Multivariate

Honourable mentions

Sparse continuous distributions (Martins et al., 2022)

Score matching (implicit generative models) (Vincent, 2011; Song
and Ermon, 2019; Song et al., 2020)

Diffusion processes (Sohl-Dickstein et al., 2015; Kingma et al., 2021)

Deep Learning 2 @ UvA Generative Models (Exact) 7 / 61

We will cover score matching and diffusion in this module.

Tools for prescribing distributions Multivariate

Summary

There are various ways to prescribe distributions both univariate and
multivariate.

Predict parameters for known pdfs and cdfs: we predict some finite
(typically small) number of parameters, and evaluate the
mass/density of an outcome using a known function.

For more flexibility we construct novel pdfs or cdfs by predicting
unnormalised densities or parameterising flows and simulators.

For multivariate and structured data we typically exploit a
factorisation into simpler distributions (NNs are particularly good at
representing complex conditioning contexts).

There are various tradeoffs: is mass/density assessment tractable? can we
sample? do we need backward passes? do we need to approximate
normalisation constants?

Deep Learning 2 @ UvA Generative Models (Exact) 8 / 61

Outline

1 Tools for prescribing distributions
Multivariate

2 Parameter Estimation

3 Autoregressive Models

4 Normalising flows

Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability mass/density p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Generative Models (Exact) 9 / 61

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).

Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability mass/density p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,

the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Generative Models (Exact) 9 / 61

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).

Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability mass/density p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) =

log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Generative Models (Exact) 9 / 61

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).

Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability mass/density p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =

N∑
s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Generative Models (Exact) 9 / 61

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).

Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability mass/density p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Generative Models (Exact) 9 / 61

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).

Parameter Estimation

MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) =

∇θ

N∑
s=1

log p(y (s)|x (s), θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function

Deep Learning 2 @ UvA Generative Models (Exact) 10 / 61

Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?

Parameter Estimation

MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) = ∇θ

N∑
s=1

log p(y (s)|x (s), θ) =

N∑
s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function

Deep Learning 2 @ UvA Generative Models (Exact) 10 / 61

Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?

Parameter Estimation

MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) = ∇θ

N∑
s=1

log p(y (s)|x (s), θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function

Deep Learning 2 @ UvA Generative Models (Exact) 10 / 61

Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?

Parameter Estimation

MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) = ∇θ

N∑
s=1

log p(y (s)|x (s), θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function

Deep Learning 2 @ UvA Generative Models (Exact) 10 / 61

Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?

Parameter Estimation

Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random

Deep Learning 2 @ UvA Generative Models (Exact) 11 / 61

We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose range is the space of gradient vectors of our model’s log-
likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?

Parameter Estimation

Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random

Deep Learning 2 @ UvA Generative Models (Exact) 11 / 61

We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose range is the space of gradient vectors of our model’s log-
likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?

Parameter Estimation

Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random

Deep Learning 2 @ UvA Generative Models (Exact) 11 / 61

We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose range is the space of gradient vectors of our model’s log-
likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?

Parameter Estimation

Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random

Deep Learning 2 @ UvA Generative Models (Exact) 11 / 61

We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose range is the space of gradient vectors of our model’s log-
likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?

Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ) with Sm ∼ U(1/N)

= ∇θ
N

M

M∑
m=1

log p(y (sm)|x (sm), θ)︸ ︷︷ ︸
LB(θ)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch

Deep Learning 2 @ UvA Generative Models (Exact) 12 / 61

The theory of stochastic optimisation (Robbins and Monro, 1951) tells us
that we will converge to a local optimum of the objective as long as we
take steps that are correct on average. This means we can optimise with
stochastic gradient estimates, for as long as they are unbiased estimates
of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).

Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ) with Sm ∼ U(1/N)

= ∇θ
N

M

M∑
m=1

log p(y (sm)|x (sm), θ)︸ ︷︷ ︸
LB(θ)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch

Deep Learning 2 @ UvA Generative Models (Exact) 12 / 61

The theory of stochastic optimisation (Robbins and Monro, 1951) tells us
that we will converge to a local optimum of the objective as long as we
take steps that are correct on average. This means we can optimise with
stochastic gradient estimates, for as long as they are unbiased estimates
of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).

Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ) with Sm ∼ U(1/N)

= ∇θ
N

M

M∑
m=1

log p(y (sm)|x (sm), θ)︸ ︷︷ ︸
LB(θ)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch

Deep Learning 2 @ UvA Generative Models (Exact) 12 / 61

The theory of stochastic optimisation (Robbins and Monro, 1951) tells us
that we will converge to a local optimum of the objective as long as we
take steps that are correct on average. This means we can optimise with
stochastic gradient estimates, for as long as they are unbiased estimates
of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).

Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ) with Sm ∼ U(1/N)

= ∇θ
N

M

M∑
m=1

log p(y (sm)|x (sm), θ)︸ ︷︷ ︸
LB(θ)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch
Deep Learning 2 @ UvA Generative Models (Exact) 12 / 61

The theory of stochastic optimisation (Robbins and Monro, 1951) tells us
that we will converge to a local optimum of the objective as long as we
take steps that are correct on average. This means we can optimise with
stochastic gradient estimates, for as long as they are unbiased estimates
of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).

Parameter Estimation

Summary – a recipe for supervised learning

Maximum likelihood estimation

tells you which loss to optimise
(i.e. negative log-likelihood)

Automatic differentiation (backprop) with gradient surrogates

a tractable and differentiable forward computation whose backward is
an unbiased estimate of the intended gradient

Stochastic optimisation powered by backprop

general purpose gradient-based optimisers

Our main job is to pick an appropriate family of distributions.

Deep Learning 2 @ UvA Generative Models (Exact) 13 / 61

Paper recommendation: for a comprehensive understanding of stochastic
computation graphs (Schulman et al., 2015).

Outline

1 Tools for prescribing distributions
Multivariate

2 Parameter Estimation

3 Autoregressive Models

4 Normalising flows

Autoregressive Models

Let’s generate some images

Conditional generation task: image generation from text (or from some
tabular data). Our images are all of fixed dimensionality (D).

Given the an input x , how about we assume images are drawn from an
MVN?

What’s wrong with this idea?

Do we really believe that cats follow a Gaussian distribution?

Deep Learning 2 @ UvA Generative Models (Exact) 14 / 61

Each x is mapped to an average output µ(x ; θ) and a covariance matrix
Σ(x ; θ)

Y |X = x ∼ N (µ(x ; θ),Σ(x ; θ)) (3a)

h = encode(x ; θenc) (3b)

L = linear(D−1)×D/2(h; θoff) (3c)

s = softplus(linearD(h; θdiag)) (3d)

C = lowtri(L) + diag(s) (3e)

µ(x ; θ) = linearD(h; θloc) (3f)

Σ(x ; θ) = CC> (3g)

• if x is a cute cat, then µ(x ; θ) is something like the ‘average cat’;

• in an MVN, output dimensions are (linearly) correlated:
y = µ(x ; θ) + Cu where ud ∼ N (0, 1);

Autoregressive Models

Let’s generate some images

Conditional generation task: image generation from text (or from some
tabular data). Our images are all of fixed dimensionality (D).

Given the an input x , how about we assume images are drawn from an
MVN? What’s wrong with this idea?

Do we really believe that cats follow a Gaussian distribution?

Deep Learning 2 @ UvA Generative Models (Exact) 14 / 61

Each x is mapped to an average output µ(x ; θ) and a covariance matrix
Σ(x ; θ)

Y |X = x ∼ N (µ(x ; θ),Σ(x ; θ)) (3a)

h = encode(x ; θenc) (3b)

L = linear(D−1)×D/2(h; θoff) (3c)

s = softplus(linearD(h; θdiag)) (3d)

C = lowtri(L) + diag(s) (3e)

µ(x ; θ) = linearD(h; θloc) (3f)

Σ(x ; θ) = CC> (3g)

• if x is a cute cat, then µ(x ; θ) is something like the ‘average cat’;

• in an MVN, output dimensions are (linearly) correlated:
y = µ(x ; θ) + Cu where ud ∼ N (0, 1);

Autoregressive Models

Let’s generate some images

Conditional generation task: image generation from text (or from some
tabular data). Our images are all of fixed dimensionality (D).

Given the an input x , how about we assume images are drawn from an
MVN? What’s wrong with this idea?

Do we really believe that cats follow a Gaussian distribution?

Deep Learning 2 @ UvA Generative Models (Exact) 14 / 61

Each x is mapped to an average output µ(x ; θ) and a covariance matrix
Σ(x ; θ)

Y |X = x ∼ N (µ(x ; θ),Σ(x ; θ)) (4a)

h = encode(x ; θenc) (4b)

L = linear(D−1)×D/2(h; θoff) (4c)

s = softplus(linearD(h; θdiag)) (4d)

C = lowtri(L) + diag(s) (4e)

µ(x ; θ) = linearD(h; θloc) (4f)

Σ(x ; θ) = CC> (4g)

• if x is a cute cat, then µ(x ; θ) is something like the ‘average cat’;

• in an MVN, output dimensions are (linearly) correlated:
y = µ(x ; θ) + Cu where ud ∼ N (0, 1);

Autoregressive Models

Let’s generate some images

It’s hard to imagine that each cat is a simple linear transformation away
from the mean cat (pun intended).

We chose the MVN because we needed a tractable density for
MLE-training, not because we expected it to be appropriate for our data.

Deep Learning 2 @ UvA Generative Models (Exact) 15 / 61

Well, textbooks don’t have cat-specific distributions, nor do we want to
develop one distribution for each type of category in imagenet.

We need a more general tool!

Autoregressive Models

Chain rule is your friend

There’s this amazing result in probability theory, it tells us that every joint
pdf over D variables can be re-expressed as a product of univariate pdfs as
follows:

p(〈y1, . . . , yD〉) =
D∏

d=1

p(yd |y<d) (5)

Conditional modelling is no problem:

p(〈y1, . . . , yD〉|x) =
D∏

d=1

p(yd |x , y<d) (6)

Deep Learning 2 @ UvA Generative Models (Exact) 16 / 61

Watch out! Chain rule does not tell you that your conditionals can be
Gaussian (or any other choice for that matter), chain rule is a formal result
assuring you that this factorisation exists, any parametric assumptions you
make is on you.

We can generalise this result to sequences of variable finite length (i.e.,
where D is itself a random variable), but it takes quite a bit more measure
theory to do so. For a modern paper discussing this in the context of
language models, see (Du et al., 2023).

Autoregressive Models

Chain rule is your friend

There’s this amazing result in probability theory, it tells us that every joint
pdf over D variables can be re-expressed as a product of univariate pdfs as
follows:

p(〈y1, . . . , yD〉) =
D∏

d=1

p(yd |y<d) (5)

Conditional modelling is no problem:

p(〈y1, . . . , yD〉|x) =
D∏

d=1

p(yd |x , y<d) (6)

Deep Learning 2 @ UvA Generative Models (Exact) 16 / 61

Watch out! Chain rule does not tell you that your conditionals can be
Gaussian (or any other choice for that matter), chain rule is a formal result
assuring you that this factorisation exists, any parametric assumptions you
make is on you.

We can generalise this result to sequences of variable finite length (i.e.,
where D is itself a random variable), but it takes quite a bit more measure
theory to do so. For a modern paper discussing this in the context of
language models, see (Du et al., 2023).

Autoregressive Models

Autoregressive models – Option 1: known pdf

Chain rule:

p(〈y1, . . . , yD〉|x) =
D∏

d=1

p(yd |x , y<d) (7)

We parameterise our conditional pdfs by encoding the conditioning context
(any fixed inputs, such as x , and the history of already generated variables
y<d) into some fixed-dimensional vector hd ∈ RH and then using this
vector to predict the parameters of a known pdf.

Deep Learning 2 @ UvA Generative Models (Exact) 17 / 61

Let hd = encode(x , y<d ; θ).

We could assume the conditional pixel distribution to be Gaussian:

p(〈y1, . . . , yD〉|x) ,
D∏

d=1

N (yd |µ(hd ; θ);σ2(hd ; θ)) (8)

Because D is fixed, for an observed sequence y1:D , we can compute all
states with a single feed-forward network with masked weights that guar-
antee autoregressiveness (for details, see MADE (Germain et al., 2015b)).

But, who says pixel distributions resemble Gaussians? Perhaps there’s skew
and multimodality (even for a given prefix y<d ; e.g., given the first row
of pixels, the next pixel could be part of a cat, of the furniture, of the
background, etc.).

Autoregressive Models

Autoregressive models – Option 2: combining known pdfs

Chain rule:

p(〈y1, . . . , yD〉|x) =
D∏

d=1

p(yd |x , y<d) (9)

We parameterise our conditional pdfs by encoding the conditioning context
(any fixed inputs, such as x , and the history of already generated variables
y<d) into some fixed-dimensional vector hd ∈ RH and then using this
vector to predict the parameters of a known pdf.

Deep Learning 2 @ UvA Generative Models (Exact) 18 / 61

Let hd = encode(x , y<d ; θ).

We could assume the conditional pixel distribution is a mixture of K Gaus-
sians (with trainable mixing coefficients (w1, . . . ,wK)> ∈ ∆K−1, possibly
predicted from hd):

p(〈y1, . . . , yD〉|x) ,
D∏

d=1

K∑
k=1

wkN (yd |µk(hd ; θ);σ2
k(h; θ)) (10)

These ideas were the essence of neural autoregressive density estimation
(NADE; Uria et al., 2014). Note: NADE also had a clever way to take
various different orders of the pixels into account (since images aren’t
actual sequences, this sometimes led to better models).

How could we go beyond a mixture of known pdfs and learn a univariate
conditional that’s more flexible?

Autoregressive Models

Autoregressive models – Option 3: known pmf

Chain rule:

p(〈y1, . . . , yD〉|x) =
D∏

d=1

p(yd |x , y<d) (11)

We parameterise our conditional pdfs by encoding the conditioning context
(any fixed inputs, such as x , and the history of already generated variables
y<d) into some fixed-dimensional vector hd ∈ RH and then using this
vector to predict the parameters of a known pdf.

Deep Learning 2 @ UvA Generative Models (Exact) 19 / 61

Let hd = encode(x , y<d ; θ).

We could discretise the pixel intensities (e.g., using 256 levels) and assume
the conditional pixel distribution is Categorical:

p(〈y1, . . . , yD〉|x) ,
D∏

d=1

Categorical(yd |π(hd ; θ)) (12)

Along with many other things (e.g., novel architectures), this extension
of NADE was at the core of PixelRNNs (van den Oord et al., 2016) and
PixelCNNs (van den Oord et al., 2016).

Autoregressive Models

Autoregressive models – Language models

The output variable is a sequence of J discrete symbols (J is finite but not
fixed).

Chain rule:

p(〈y1, . . . , yJ〉|x) =
J∏

j=1

p(yj |x , y<j) (13)

We parameterise our conditional pdfs by encoding the conditioning context
(any fixed inputs, such as x , and the history of already generated variables
y<j) into some fixed-dimensional vector hj ∈ RH and then using this
vector to predict the parameters of a known pdf.

Deep Learning 2 @ UvA Generative Models (Exact) 20 / 61

Let hj = encode(x , y<j ; θ).

Assuming the vocabulary of known symbols is finite and that its size is
manageable (given the typical hardware we have) and that conditionals are
dense (every symbol is assigned strictly positive mass), then the conditional
pixel distribution is Categorical:

p(〈y1, . . . , yJ〉|x) ,
J∏

j=1

Categorical(yj |π(hj ; θ)) (14)

This is what we call an autoregressive language model, the 2010 rendition
of it employed RNN cells (Mikolov et al., 2010).

Autoregressive Models

Autoregressive models – Time series

A factorisation using chain rule is such a general tool, you can use for any
time-series-type data.

You will need to motivate a design choice for your conditionals. For
example,

in floods forecasting, it looks like they have good reasons to model
with Laplace distributions (Nearing et al., 2024)

in forecasting voting intentions, it’s common to use Dirichlet (and
related) distributions (Gordon-Rodriguez et al., 2020)

Deep Learning 2 @ UvA Generative Models (Exact) 21 / 61

Autoregressive Models

Autoregressive models – Details

At this level of generality, very little changes from one application to
another, we essentially only motivate a design choice for the conditional
factors.

It’s the implementation of the encoding function that typically holds the
key to a successful application. The options are numerous:

Recurrent networks (Hochreiter and Schmidhuber, 1997; Cho et al.,
2014)

Masked dense networks (Germain et al., 2015b)

Convolutional networks (van den Oord et al., 2016; Kalchbrenner
et al., 2016)

Transformers (Vaswani et al., 2017)

Structured state-space models (Gu et al., 2022; Gu and Dao, 2023)

Deep Learning 2 @ UvA Generative Models (Exact) 22 / 61

The output variable is a sequence of finite length J, which may or may not
vary.

Chain rule:

p(〈y1, . . . , yJ〉|x) =
J∏

j=1

p(yj |x , y<j) (15)

We parameterise our conditional pdfs by encoding the conditioning context
(any fixed inputs, such as x , and the history of already generated variables
y<j) into some fixed-dimensional vector hj ∈ RH and then using this vector
to predict the parameters of a known pdf.

Autoregressive Models

Assessing the joint pdf

This is efficient by design. For a reasonable choice, the worst case should
be linear in J.

Consider an LM as example:

p(〈y1, . . . , yJ〉|x) ,
J∏

j=1

Categorical(yj |π(hj ; θ)) (16)

we observe y1:J , with computation time linear in J we gather
encodings h1, . . . ,hJ for the prediction of each cpd;

for each of these hj , we predict a Categorical parameter (e.g., using
an FFNN with softmax output) and look up the probability mass
corresponding to the observed yj

Deep Learning 2 @ UvA Generative Models (Exact) 23 / 61

Autoregressive Models

Assessing the joint pdf

This is efficient by design. For a reasonable choice, the worst case should
be linear in J.

Consider an LM as example:

p(〈y1, . . . , yJ〉|x) ,
J∏

j=1

Categorical(yj |π(hj ; θ)) (16)

we observe y1:J , with computation time linear in J we gather
encodings h1, . . . ,hJ for the prediction of each cpd;

for each of these hj , we predict a Categorical parameter (e.g., using
an FFNN with softmax output) and look up the probability mass
corresponding to the observed yj

Deep Learning 2 @ UvA Generative Models (Exact) 23 / 61

Autoregressive Models

Assessing the joint pdf

This is efficient by design. For a reasonable choice, the worst case should
be linear in J.

Consider an LM as example:

p(〈y1, . . . , yJ〉|x) ,
J∏

j=1

Categorical(yj |π(hj ; θ)) (16)

we observe y1:J , with computation time linear in J we gather
encodings h1, . . . ,hJ for the prediction of each cpd;

for each of these hj , we predict a Categorical parameter (e.g., using
an FFNN with softmax output) and look up the probability mass
corresponding to the observed yj

Deep Learning 2 @ UvA Generative Models (Exact) 23 / 61

Autoregressive Models

Assessing the joint pdf

This is efficient by design. For a reasonable choice, the worst case should
be linear in J.

Consider an LM as example:

p(〈y1, . . . , yJ〉|x) ,
J∏

j=1

Categorical(yj |π(hj ; θ)) (16)

we observe y1:J , with computation time linear in J we gather
encodings h1, . . . ,hJ for the prediction of each cpd;

for each of these hj , we predict a Categorical parameter (e.g., using
an FFNN with softmax output) and look up the probability mass
corresponding to the observed yj

Deep Learning 2 @ UvA Generative Models (Exact) 23 / 61

When we assess the mass/density of a complete sequence, the entire se-
quence is already known to us, so, depending on the architecture that
computes the encodings h1, . . . ,hJ this computation can be parallelised.

For example, the state hj of an LSTM cannot be re-expressed as a com-
putation that’s independent of hj−1, so LSTMs can hardly be accelerated
to sub-linear computation time.

The state hj of a Transformer depends on all of y<j , but is independent
of hj−1, hence with enough GPU cores and memory, we can parallelise the
computation of the J states h1, . . . ,hJ .

For illustration’s sake, here’s a choice that’s worst than linear: hj =
BiLSTM(y<j). Do you see why that’s so?

Autoregressive Models

Sampling

This is efficient by design.

We obtain a sample by drawing iteratively:

1 j ← 0 and s ← 〈〉;
2 increment j and draw outcome o with probability mass/density

p(Yj = o|X = x ,Y<j = s)

3 append o to s, repeat (2) until a termination criterion is met
e.g., j = J (if J never varies), or j achieves a predefined maximum
length, or o is a terminating outcomes (EoS in LMs), etc.

In step (2) we draw from a cpd (this is typically efficient for known pdfs,
and mixture of known pdfs). Before we can draw, we need to predict that
cpd, which requires computing hj .

Deep Learning 2 @ UvA Generative Models (Exact) 24 / 61

Autoregressive Models

Sampling

This is efficient by design.

We obtain a sample by drawing iteratively:

1 j ← 0 and s ← 〈〉;

2 increment j and draw outcome o with probability mass/density
p(Yj = o|X = x ,Y<j = s)

3 append o to s, repeat (2) until a termination criterion is met
e.g., j = J (if J never varies), or j achieves a predefined maximum
length, or o is a terminating outcomes (EoS in LMs), etc.

In step (2) we draw from a cpd (this is typically efficient for known pdfs,
and mixture of known pdfs). Before we can draw, we need to predict that
cpd, which requires computing hj .

Deep Learning 2 @ UvA Generative Models (Exact) 24 / 61

Autoregressive Models

Sampling

This is efficient by design.

We obtain a sample by drawing iteratively:

1 j ← 0 and s ← 〈〉;
2 increment j and draw outcome o with probability mass/density

p(Yj = o|X = x ,Y<j = s)

3 append o to s, repeat (2) until a termination criterion is met
e.g., j = J (if J never varies), or j achieves a predefined maximum
length, or o is a terminating outcomes (EoS in LMs), etc.

In step (2) we draw from a cpd (this is typically efficient for known pdfs,
and mixture of known pdfs). Before we can draw, we need to predict that
cpd, which requires computing hj .

Deep Learning 2 @ UvA Generative Models (Exact) 24 / 61

Autoregressive Models

Sampling

This is efficient by design.

We obtain a sample by drawing iteratively:

1 j ← 0 and s ← 〈〉;
2 increment j and draw outcome o with probability mass/density

p(Yj = o|X = x ,Y<j = s)

3 append o to s, repeat (2) until a termination criterion is met
e.g., j = J (if J never varies), or j achieves a predefined maximum
length, or o is a terminating outcomes (EoS in LMs), etc.

In step (2) we draw from a cpd (this is typically efficient for known pdfs,
and mixture of known pdfs). Before we can draw, we need to predict that
cpd, which requires computing hj .

Deep Learning 2 @ UvA Generative Models (Exact) 24 / 61

Autoregressive Models

Sampling

This is efficient by design.

We obtain a sample by drawing iteratively:

1 j ← 0 and s ← 〈〉;
2 increment j and draw outcome o with probability mass/density

p(Yj = o|X = x ,Y<j = s)

3 append o to s, repeat (2) until a termination criterion is met
e.g., j = J (if J never varies), or j achieves a predefined maximum
length, or o is a terminating outcomes (EoS in LMs), etc.

In step (2) we draw from a cpd (this is typically efficient for known pdfs,
and mixture of known pdfs). Before we can draw, we need to predict that
cpd, which requires computing hj .

Deep Learning 2 @ UvA Generative Models (Exact) 24 / 61

Autoregressive Models

Sampling

This is efficient by design.

We obtain a sample by drawing iteratively:

1 j ← 0 and s ← 〈〉;
2 increment j and draw outcome o with probability mass/density

p(Yj = o|X = x ,Y<j = s)

3 append o to s, repeat (2) until a termination criterion is met
e.g., j = J (if J never varies), or j achieves a predefined maximum
length, or o is a terminating outcomes (EoS in LMs), etc.

In step (2) we draw from a cpd (this is typically efficient for known pdfs,
and mixture of known pdfs). Before we can draw, we need to predict that
cpd, which requires computing hj .

Deep Learning 2 @ UvA Generative Models (Exact) 24 / 61

For an LSTM, hj is a constant-time operation away from hj−1, which we
have from the previous step. Say updating the state takes time O(C),
then sampling runs in time O(J × C)

For a Transformer, knowing hj−1 (which we computed in the previous
step) does not help, as the computation of hj depends on y<j (and not
on h<j). Hence we need to go through the entire Transformer stack with
the extended history. Say running one Transformer layer takes time O(T),
then sampling runs in time O(J × L × T), where L is the depth of the
Transformer stack. For a Transformer, T is in fact quadratic in the length
of the history, but on GPU, we can parallelise those computations to (at
least) linear time.

Autoregressive Models

Honourable mentions

With careful assumptions on the encoding function, its computations may
be equivalently expressible as a recurrence or a convolution. When that
happens, assessing the pdf and sampling are equally efficient (provided we
have appropriate hardware and primitives for maximum parallelism).

To learn more about this, read about S4-type models (Gu et al., 2022; Gu
and Dao, 2023).

I am not the right person to teach you those.
Deep Learning 2 @ UvA Generative Models (Exact) 25 / 61

Masked-dense layers, CNNs, and Transformers all enjoy fast density as-
sessment (when the sequence is observed) and slower sampling.

S4-type models use their convolutional view for fast training, but offer an
equivalent recurrent view for fast sampling.

Autoregressive Models

Search: making optimal decisions

Because autoregressive models make no conditional independence
assumptions, this is as inefficient as it gets.

The notion of an optimal decision requires a decision rule (a ‘decoding
algorithm’). For example, with discrete data it’s common to use the rule

y? = arg max
c∈Y

J∑
j=1

log p(cj |x , c<j) (17)

Any choice cj will affect the probability mass/density of choices c>j , hence
there’s no tractable solution to this search problem.

Common heuristics include: greedy search, beam-search, biased samplers
(e.g., top-k, top-p, temperature, etc.).

Deep Learning 2 @ UvA Generative Models (Exact) 26 / 61

Autoregressive Models

Search: making optimal decisions

Because autoregressive models make no conditional independence
assumptions, this is as inefficient as it gets.

The notion of an optimal decision requires a decision rule (a ‘decoding
algorithm’). For example, with discrete data it’s common to use the rule

y? = arg max
c∈Y

J∑
j=1

log p(cj |x , c<j) (17)

Any choice cj will affect the probability mass/density of choices c>j , hence
there’s no tractable solution to this search problem.

Common heuristics include: greedy search, beam-search, biased samplers
(e.g., top-k, top-p, temperature, etc.).

Deep Learning 2 @ UvA Generative Models (Exact) 26 / 61

A more general decision rule (which includes the former as special case)
searches for:

y? = arg max
c∈Y

E[u(c ,Y)] (18)

where u(c , y) is a utility function assessing a candidate c against a response
y , and the expectation is taken with respect to the joint pdf p(y |x).

Besides being more general, this can address fundamental limitations of
the special case. See for example, (Eikema and Aziz, 2020) to learn about
those limitations and (Eikema and Aziz, 2022) to learn about algorithmic
approximations to the general decision rule.

Autoregressive Models

What should I use?

Look around for relevant literature, base your choices on what is known to
work well for similar data.

Some considerations are somewhat logical:

Transformers need many layers to learn complex composition
functions; that is, Transformers need to be deep. This likely means
they need bigger data.

The fact that all positions are a constant number of operations away
from one another gives (deep enough) Transformers a good chance to
learn long-range dependencies (that are spread arbitrarily far away
along a very long sequence). But you will need topnotch hardware for
that.

LSTMs are in principle able to learn a wider class of functions than
Transformers (because Transformers learn composition functions of
fixed depth).

Deep Learning 2 @ UvA Generative Models (Exact) 27 / 61

For various results relating Transformers to different formal languages, see
for example (Hahn, 2020; Bhattamishra et al., 2020; Strobl et al., 2023;
Hahn and Rofin, 2024).

Autoregressive Models

Summary

Chain rule allows us to build complex joint pdfs using simpler tools
(typically, known pdfs).

We need to make a design choice for our conditional pdfs: this choice
is mostly constrained by data type.

We need an encoding function to process conditioning context: this
choice depends on various factors (complexity of data, availability of
training data, etc.).

Convolutional encoding functions are typically highly parallelisable
during training (density computation).

Recurrent encoding function are efficient for sampling.

Search is generally intractable

Deep Learning 2 @ UvA Generative Models (Exact) 28 / 61

Outline

1 Tools for prescribing distributions
Multivariate

2 Parameter Estimation

3 Autoregressive Models

4 Normalising flows

Normalising flows

The problem with known pdfs: the case of pictures

Have you modelled images (or their pixels) as Gaussian variables? Do we
really believe that they follow a Gaussian distribution?

Deep Learning 2 @ UvA Generative Models (Exact) 29 / 61

Normalising flows

The problem with known pdfs: the case of word
embeddings

What do you think word embeddings distribute like?

Figure: tSNE projection from R50 (left) and R100 (right); see https:

//it.mathworks.com/help/textanalytics/ref/trainwordembedding.html

Deep Learning 2 @ UvA Generative Models (Exact) 30 / 61

https://it.mathworks.com/help/textanalytics/ref/trainwordembedding.html
https://it.mathworks.com/help/textanalytics/ref/trainwordembedding.html

Normalising flows

The problem with known pdfs: the case of word
embeddings

What do you think word embeddings distribute like?

Figure: tSNE projection from R50 (left) and R100 (right); see https:

//it.mathworks.com/help/textanalytics/ref/trainwordembedding.html

Deep Learning 2 @ UvA Generative Models (Exact) 30 / 61

Figure: tSNE projection of 1000 samples from N (0, I50).

https://it.mathworks.com/help/textanalytics/ref/trainwordembedding.html
https://it.mathworks.com/help/textanalytics/ref/trainwordembedding.html

Normalising flows

Calculus for the rescue: reparametrisation using a bijection

Express the density of a variable Y in terms of the density of a variable E .
Assume that a differentiable, invertible mapping h : E → Y exists.

h(ε) = y

pY (y) = pE (h−1(y))|det Jh−1(y)|
pE (ε) = pY (h(ε))|det Jh(ε)|

Challenge the mapping h (or its inverse) needs to be defined.

Deep Learning 2 @ UvA Generative Models (Exact) 31 / 61

For example, if y ∈ RD , we could use a multivariate Normal for pE .

For an in-depth view of the maths behind this, check Sec-
tions 1 and 2 of https://probabll.github.io/slides/DL2/2023/

vi-continuous-appendix.pdf

https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf
https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf

Normalising flows

Calculus for the rescue: reparametrisation using a bijection

Express the density of a variable Y in terms of the density of a variable E .
Assume that a differentiable, invertible mapping h : E → Y exists.

h(ε) = y

pY (y) = pE (h−1(y))|det Jh−1(y)|

pE (ε) = pY (h(ε))|det Jh(ε)|

Challenge the mapping h (or its inverse) needs to be defined.

Deep Learning 2 @ UvA Generative Models (Exact) 31 / 61

For example, if y ∈ RD , we could use a multivariate Normal for pE .

For an in-depth view of the maths behind this, check Sec-
tions 1 and 2 of https://probabll.github.io/slides/DL2/2023/

vi-continuous-appendix.pdf

https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf
https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf

Normalising flows

Calculus for the rescue: reparametrisation using a bijection

Express the density of a variable Y in terms of the density of a variable E .
Assume that a differentiable, invertible mapping h : E → Y exists.

h(ε) = y

pY (y) = pE (h−1(y))|det Jh−1(y)|
pE (ε) = pY (h(ε))|det Jh(ε)|

Challenge the mapping h (or its inverse) needs to be defined.

Deep Learning 2 @ UvA Generative Models (Exact) 31 / 61

For example, if y ∈ RD , we could use a multivariate Normal for pE .

For an in-depth view of the maths behind this, check Sec-
tions 1 and 2 of https://probabll.github.io/slides/DL2/2023/

vi-continuous-appendix.pdf

https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf
https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf

Normalising flows

Calculus for the rescue: reparametrisation using a bijection

Express the density of a variable Y in terms of the density of a variable E .
Assume that a differentiable, invertible mapping h : E → Y exists.

h(ε) = y

pY (y) = pE (h−1(y))|det Jh−1(y)|
pE (ε) = pY (h(ε))|det Jh(ε)|

Challenge the mapping h (or its inverse) needs to be defined.

Deep Learning 2 @ UvA Generative Models (Exact) 31 / 61

For example, if y ∈ RD , we could use a multivariate Normal for pE .

For an in-depth view of the maths behind this, check Sec-
tions 1 and 2 of https://probabll.github.io/slides/DL2/2023/

vi-continuous-appendix.pdf

https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf
https://probabll.github.io/slides/DL2/2023/vi-continuous-appendix.pdf

Normalising flows

Normalising Flows

Use an NN to learn the transformation h (or its inverse). We will have to
constrain our NN carefully to guarantee that h is bijective/invertible.

If we want pY (y), we need to provide |det Jh−1(y)| in the forward pass.

We are going to devise ways to get |det Jh−1(y)| efficiently.

Deep Learning 2 @ UvA Generative Models (Exact) 32 / 61

Normalising flows

Core idea

Decompose mapping h : E → Y into

h = h1 ◦ h2 ◦ . . . ◦ hK

or, equivalently,
h−1 = h−1

K ◦ h
−1
K−1 ◦ . . . ◦ h

−1
1 .

Now we can learn K mappings with simple Jacobian determinants.

pE (ε) = pY (y)
∣∣∣det Jh1 (y (1))

∣∣∣∣∣∣det Jh2 (y (2))
∣∣∣ . . . |det JhK (ε)|

pY (y) = pE (ε)
∣∣∣det Jh−1

K
(y (K−1))

∣∣∣∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 33 / 61

Because h is bijective by design, the two views are equivalent.

But, as we will be parameterising h using an NN, we might prefer to
parameterise h or h−1.

In fact, even though h is bijective by design (and we will make sure this
is true), depending on how we parameterise it (or its inverse), the other
direction might not be known to us (i.e., we may not be able to computa-
tionally invert the function, even though it’s constrained to be bijective).

Normalising flows

Core idea

Decompose mapping h : E → Y into

h = h1 ◦ h2 ◦ . . . ◦ hK

or, equivalently,
h−1 = h−1

K ◦ h
−1
K−1 ◦ . . . ◦ h

−1
1 .

Now we can learn K mappings with simple Jacobian determinants.

pE (ε) = pY (y)
∣∣∣det Jh1 (y (1))

∣∣∣∣∣∣det Jh2 (y (2))
∣∣∣ . . . |det JhK (ε)|

pY (y) = pE (ε)
∣∣∣det Jh−1

K
(y (K−1))

∣∣∣∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 33 / 61

Because h is bijective by design, the two views are equivalent.

But, as we will be parameterising h using an NN, we might prefer to
parameterise h or h−1.

In fact, even though h is bijective by design (and we will make sure this
is true), depending on how we parameterise it (or its inverse), the other
direction might not be known to us (i.e., we may not be able to computa-
tionally invert the function, even though it’s constrained to be bijective).

Normalising flows

Core idea

Decompose mapping h : E → Y into

h = h1 ◦ h2 ◦ . . . ◦ hK

or, equivalently,
h−1 = h−1

K ◦ h
−1
K−1 ◦ . . . ◦ h

−1
1 .

Now we can learn K mappings with simple Jacobian determinants.

pE (ε) = pY (y)
∣∣∣det Jh1 (y (1))

∣∣∣∣∣∣det Jh2 (y (2))
∣∣∣ . . . |det JhK (ε)|

pY (y) = pE (ε)
∣∣∣det Jh−1

K
(y (K−1))

∣∣∣∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 33 / 61

Because h is bijective by design, the two views are equivalent.

But, as we will be parameterising h using an NN, we might prefer to
parameterise h or h−1.

In fact, even though h is bijective by design (and we will make sure this
is true), depending on how we parameterise it (or its inverse), the other
direction might not be known to us (i.e., we may not be able to computa-
tionally invert the function, even though it’s constrained to be bijective).

Normalising flows

Core idea

Decompose mapping h : E → Y into

h = h1 ◦ h2 ◦ . . . ◦ hK

or, equivalently,
h−1 = h−1

K ◦ h
−1
K−1 ◦ . . . ◦ h

−1
1 .

Now we can learn K mappings with simple Jacobian determinants.

pE (ε) = pY (y)
∣∣∣det Jh1 (y (1))

∣∣∣∣∣∣det Jh2 (y (2))
∣∣∣ . . . |det JhK (ε)|

pY (y) = pE (ε)
∣∣∣det Jh−1

K
(y (K−1))

∣∣∣∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 33 / 61

Because h is bijective by design, the two views are equivalent.

But, as we will be parameterising h using an NN, we might prefer to
parameterise h or h−1.

In fact, even though h is bijective by design (and we will make sure this
is true), depending on how we parameterise it (or its inverse), the other
direction might not be known to us (i.e., we may not be able to computa-
tionally invert the function, even though it’s constrained to be bijective).

Normalising flows

Core idea

Decompose mapping h : E → Y into

h = h1 ◦ h2 ◦ . . . ◦ hK

or, equivalently,
h−1 = h−1

K ◦ h
−1
K−1 ◦ . . . ◦ h

−1
1 .

Now we can learn K mappings with simple Jacobian determinants.

pE (ε) = pY (y)
∣∣∣det Jh1 (y (1))

∣∣∣∣∣∣det Jh2 (y (2))
∣∣∣ . . . |det JhK (ε)|

pY (y) = pE (ε)
∣∣∣det Jh−1

K
(y (K−1))

∣∣∣∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 33 / 61

Because h is bijective by design, the two views are equivalent.

But, as we will be parameterising h using an NN, we might prefer to
parameterise h or h−1.

In fact, even though h is bijective by design (and we will make sure this
is true), depending on how we parameterise it (or its inverse), the other
direction might not be known to us (i.e., we may not be able to computa-
tionally invert the function, even though it’s constrained to be bijective).

Normalising flows

Normalising Flows

Figure: Taken from Rezende and Mohamed (2015)

Deep Learning 2 @ UvA Generative Models (Exact) 34 / 61

Normalising flows

Applications

Density estimation (today): Y is our data variable with unknown
distribution, we know pE and have the means to learn h−1 : Y → E .

Inference model (second half of the module): Y is a latent variable with
unknown distribution, we know pE and have the means to learn h : E → Y.

Deep Learning 2 @ UvA Generative Models (Exact) 35 / 61

Normalising flows

Normalising Flows for Density Estimation

Setting

Our data y has unknown continuous density pY (y). We can therefore not
handcraft a likelihood.

Examples: word embeddings, pictures

Goal

Transform observed variable y into ε = h−1(y) with known density pE (ε)
and express the likelihood as

pY (y) = pE (h−1(y))|det Jh−1 (y)|

= pE (h−1
K (y (K−1)))

∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 36 / 61

Normalising flows

Normalising Flows for Density Estimation

Setting

Our data y has unknown continuous density pY (y). We can therefore not
handcraft a likelihood.
Examples: word embeddings, pictures

Goal

Transform observed variable y into ε = h−1(y) with known density pE (ε)
and express the likelihood as

pY (y) = pE (h−1(y))|det Jh−1 (y)|

= pE (h−1
K (y (K−1)))

∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 36 / 61

Normalising flows

Normalising Flows for Density Estimation

Setting

Our data y has unknown continuous density pY (y). We can therefore not
handcraft a likelihood.
Examples: word embeddings, pictures

Goal

Transform observed variable y into ε = h−1(y) with known density pE (ε)
and express the likelihood as

pY (y) = pE (h−1(y))|det Jh−1 (y)|

= pE (h−1
K (y (K−1)))

∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 36 / 61

Normalising flows

Normalising Flows for Density Estimation

Setting

Our data y has unknown continuous density pY (y). We can therefore not
handcraft a likelihood.
Examples: word embeddings, pictures

Goal

Transform observed variable y into ε = h−1(y) with known density pE (ε)
and express the likelihood as

pY (y) = pE (h−1(y))|det Jh−1 (y)|

= pE (h−1
K (y (K−1)))

∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 36 / 61

Normalising flows

Normalising Flows for Density Estimation

Setting

Our data y has unknown continuous density pY (y). We can therefore not
handcraft a likelihood.
Examples: word embeddings, pictures

Goal

Transform observed variable y into ε = h−1(y) with known density pE (ε)
and express the likelihood as

pY (y) = pE (h−1(y))|det Jh−1 (y)|

= pE (h−1
K (y (K−1)))

∣∣∣det Jh−1
K−1

(y (K−2))
∣∣∣ . . . ∣∣∣det Jh−1

1
(y)
∣∣∣

Deep Learning 2 @ UvA Generative Models (Exact) 36 / 61

Normalising flows

2-step Flow

pY (y) = pE (

y (2)︷︸︸︷
ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

The transformations h−1
2 and h−1

1 are learned by backprop (while still
being invertible). The determinants need to be computed analytically.

Deep Learning 2 @ UvA Generative Models (Exact) 37 / 61

Normalising flows

2-step Flow

pY (y) = pE (

y (2)︷︸︸︷
ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

The transformations h−1
2 and h−1

1 are learned by backprop (while still
being invertible). The determinants need to be computed analytically.

Deep Learning 2 @ UvA Generative Models (Exact) 37 / 61

Normalising flows

2-step Flow

pY (y) = pE (

y (2)︷︸︸︷
ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

The transformations h−1
2 and h−1

1 are learned by backprop (while still
being invertible). The determinants need to be computed analytically.

Deep Learning 2 @ UvA Generative Models (Exact) 37 / 61

Normalising flows

Designing a Transformation

Assume: y = (y1, y2, . . . , yJ). Then factorise the density according to the
chain rule.

log p(y |θ) =
J∑

j=1

log p(yj |y<j , θ)

Next assume an invertible mapping εj = h−1(yj), the mapping is
parameterised using y<j .

Deep Learning 2 @ UvA Generative Models (Exact) 38 / 61

We will specify the bijection one coordinate at a time. This just makes it
easier to specify a bijection (it’s easier to work on R than RD).

By having εj depend on yj and y<j , but not on y>j , we will obtain a
convenient Jacobian matrix.

Normalising flows

Designing a Transformation

Assume: y = (y1, y2, . . . , yJ). Then factorise the density according to the
chain rule.

log p(y |θ) =
J∑

j=1

log p(yj |y<j , θ)

Next assume an invertible mapping εj = h−1(yj), the mapping is
parameterised using y<j .

Deep Learning 2 @ UvA Generative Models (Exact) 38 / 61

We will specify the bijection one coordinate at a time. This just makes it
easier to specify a bijection (it’s easier to work on R than RD).

By having εj depend on yj and y<j , but not on y>j , we will obtain a
convenient Jacobian matrix.

Normalising flows

Designing a Transformation (first step of the flow)

We use an NN g
(1)
θ to predict the parameters of the first transformation:[

µj σj
]

= g
(1)
θ (y<j). Then we apply the first transformation.

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

y (1) = h−1
1 (y) =

y − µ1

σ1

The Jacobian is
Jh−1

1
(y) = Iσ−1

1 + J−µ1
σ1

(y)

Deep Learning 2 @ UvA Generative Models (Exact) 39 / 61

A simple invertible transformation: the affine function (with non-zero
slope).

a = σb + µ (19)

b =
a− µ
σ

(20)

We typically constrain σ > 0. For stability, we may use σ ∈ (0, 1).

Normalising flows

Designing a Transformation (first step of the flow)

We use an NN g
(1)
θ to predict the parameters of the first transformation:[

µj σj
]

= g
(1)
θ (y<j). Then we apply the first transformation.

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

y (1) = h−1
1 (y) =

y − µ1

σ1

The Jacobian is
Jh−1

1
(y) = Iσ−1

1 + J−µ1
σ1

(y)

Deep Learning 2 @ UvA Generative Models (Exact) 39 / 61

A simple invertible transformation: the affine function (with non-zero
slope).

a = σb + µ (19)

b =
a− µ
σ

(20)

We typically constrain σ > 0. For stability, we may use σ ∈ (0, 1).

Normalising flows

Designing a Transformation (first step of the flow)

We use an NN g
(1)
θ to predict the parameters of the first transformation:[

µj σj
]

= g
(1)
θ (y<j). Then we apply the first transformation.

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

y (1) = h−1
1 (y) =

y − µ1

σ1

The Jacobian is
Jh−1

1
(y) =

Iσ−1
1 + J−µ1

σ1

(y)

Deep Learning 2 @ UvA Generative Models (Exact) 39 / 61

A simple invertible transformation: the affine function (with non-zero
slope).

a = σb + µ (19)

b =
a− µ
σ

(20)

We typically constrain σ > 0. For stability, we may use σ ∈ (0, 1).

Normalising flows

Designing a Transformation (first step of the flow)

We use an NN g
(1)
θ to predict the parameters of the first transformation:[

µj σj
]

= g
(1)
θ (y<j). Then we apply the first transformation.

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

y (1) = h−1
1 (y) =

y − µ1

σ1

The Jacobian is
Jh−1

1
(y) = Iσ−1

1 + J−µ1
σ1

(y)

Deep Learning 2 @ UvA Generative Models (Exact) 39 / 61

A simple invertible transformation: the affine function (with non-zero
slope).

a = σb + µ (21)

b =
a− µ
σ

(22)

We typically constrain σ > 0. For stability, we may use σ ∈ (0, 1).

Normalising flows

Designing a Transformation

Define αi ,j = d
dyi

−µj
σj

.

Jh−1
K

(y) = Iσ−1 + J−µ
σ

(y) =


σ−1

1,1 0 · · · 0 0

0 σ−1
2,2 · · · 0 0

0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 σ−1

m,m

 +


0 0 · · · 0 0
α2,1 0 · · · 0 0
α3,1 α3,2 · · · 0 0

...
... · · ·

...
...

αm,1 αm,2 · · · αm,m−1 0



Deep Learning 2 @ UvA Generative Models (Exact) 40 / 61

Normalising flows

Designing a Transformation

Define αi ,j = d
dyi

−µj
σj

.

Jh−1
K

(y) = Iσ−1 + J−µ
σ

(y) =
σ−1

1,1 0 · · · 0 0

0 σ−1
2,2 · · · 0 0

0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 σ−1

m,m



+


0 0 · · · 0 0
α2,1 0 · · · 0 0
α3,1 α3,2 · · · 0 0

...
... · · ·

...
...

αm,1 αm,2 · · · αm,m−1 0



Deep Learning 2 @ UvA Generative Models (Exact) 40 / 61

Normalising flows

Designing a Transformation

Define αi ,j = d
dyi

−µj
σj

.

Jh−1
K

(y) = Iσ−1 + J−µ
σ

(y) =
σ−1

1,1 0 · · · 0 0

0 σ−1
2,2 · · · 0 0

0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 σ−1

m,m

 +


0 0 · · · 0 0
α2,1 0 · · · 0 0
α3,1 α3,2 · · · 0 0

...
... · · ·

...
...

αm,1 αm,2 · · · αm,m−1 0



Deep Learning 2 @ UvA Generative Models (Exact) 40 / 61

Normalising flows

Designing an efficient transformation

y1 y2 y3 y4

y
(1)
1 y

(1)
2 y

(1)
3 y

(1)
4

ε1 ε2 ε3 ε4N (0, I)

Deep Learning 2 @ UvA Generative Models (Exact) 41 / 61

The solid lines are simple linear functions, whose slope and intercept are
autoregressively predicted by an NN for each step of the flow (the dashes
lines show these dependencies).

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

εj = [h−1
2 (y (1))]j =

y
(1)
j − µ2(y

(1)
<j)

σ2(y
(1)
<j)

For fixed J, we can use a MADE (Germain et al., 2015b)

An autoregressive network that takes constant time (it’s implemented
using an FFNN). Its connectivity matrix is lower-triangular.

0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

... · · ·
...

...
1 1 · · · 1 0



Normalising flows

Designing an efficient transformation

y1 y2 y3 y4

y
(1)
1 y

(1)
2 y

(1)
3 y

(1)
4

ε1 ε2 ε3 ε4N (0, I)

Deep Learning 2 @ UvA Generative Models (Exact) 41 / 61

The solid lines are simple linear functions, whose slope and intercept are
autoregressively predicted by an NN for each step of the flow (the dashes
lines show these dependencies).

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

εj = [h−1
2 (y (1))]j =

y
(1)
j − µ2(y

(1)
<j)

σ2(y
(1)
<j)

For fixed J, we can use a MADE (Germain et al., 2015b)

An autoregressive network that takes constant time (it’s implemented
using an FFNN). Its connectivity matrix is lower-triangular.

0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

... · · ·
...

...
1 1 · · · 1 0



Normalising flows

Designing an efficient transformation

y1 y2 y3 y4

y
(1)
1 y

(1)
2 y

(1)
3 y

(1)
4

ε1 ε2 ε3 ε4

N (0, I)

Deep Learning 2 @ UvA Generative Models (Exact) 41 / 61

The solid lines are simple linear functions, whose slope and intercept are
autoregressively predicted by an NN for each step of the flow (the dashes
lines show these dependencies).

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

εj = [h−1
2 (y (1))]j =

y
(1)
j − µ2(y

(1)
<j)

σ2(y
(1)
<j)

For fixed J, we can use a MADE (Germain et al., 2015b)

An autoregressive network that takes constant time (it’s implemented
using an FFNN). Its connectivity matrix is lower-triangular.

0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

... · · ·
...

...
1 1 · · · 1 0



Normalising flows

Designing an efficient transformation

y1 y2 y3 y4

y
(1)
1 y

(1)
2 y

(1)
3 y

(1)
4

ε1 ε2 ε3 ε4N (0, I)

Deep Learning 2 @ UvA Generative Models (Exact) 41 / 61

The solid lines are simple linear functions, whose slope and intercept are
autoregressively predicted by an NN for each step of the flow (the dashes
lines show these dependencies).

y
(1)
j = [h−1

1 (y)]j =
yj − µ1(y<j)

σ1(y<j)

εj = [h−1
2 (y (1))]j =

y
(1)
j − µ2(y

(1)
<j)

σ2(y
(1)
<j)

For fixed J, we can use a MADE (Germain et al., 2015b)

An autoregressive network that takes constant time (it’s implemented
using an FFNN). Its connectivity matrix is lower-triangular.

0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

... · · ·
...

...
1 1 · · · 1 0



Normalising flows

Designing a Transformation

Simple Jacobian Determinant∣∣∣det Jh−1
1

(y)
∣∣∣ =

J∏
j=1

σ−1
j

In practice we work with the log-likelihood.

log
∣∣∣det Jh−1

1
(y)
∣∣∣ = −

J∑
j=1

log σj

Deep Learning 2 @ UvA Generative Models (Exact) 42 / 61

Normalising flows

Designing a Transformation

Simple Jacobian Determinant∣∣∣det Jh−1
1

(y)
∣∣∣ =

J∏
j=1

σ−1
j

In practice we work with the log-likelihood.

log
∣∣∣det Jh−1

1
(y)
∣∣∣ = −

J∑
j=1

log σj

Deep Learning 2 @ UvA Generative Models (Exact) 42 / 61

Normalising flows

2-step Flow

pY (y) = pE (ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

log pY (y) = log pE (h−1
2 (h−1

1 (y)))−
J∑

j=1

log σ
(2)
j −

J∑
j=1

log σ
(1)
j

y (1) = h−1
1 (y) =

y − µ(1)

σ(1)
where

[
µ(1), σ(1)

]
= g (1)(y)

ε = h−1
2 (y (1)) =

y (1) − µ(2)

σ(2)
where

[
µ(2), σ(2)

]
= g (2)(y (1))

Deep Learning 2 @ UvA Generative Models (Exact) 43 / 61

Normalising flows

2-step Flow

pY (y) = pE (ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

log pY (y) = log pE (h−1
2 (h−1

1 (y)))

−
J∑

j=1

log σ
(2)
j −

J∑
j=1

log σ
(1)
j

y (1) = h−1
1 (y) =

y − µ(1)

σ(1)
where

[
µ(1), σ(1)

]
= g (1)(y)

ε = h−1
2 (y (1)) =

y (1) − µ(2)

σ(2)
where

[
µ(2), σ(2)

]
= g (2)(y (1))

Deep Learning 2 @ UvA Generative Models (Exact) 43 / 61

Normalising flows

2-step Flow

pY (y) = pE (ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

log pY (y) = log pE (h−1
2 (h−1

1 (y)))−
J∑

j=1

log σ
(2)
j −

J∑
j=1

log σ
(1)
j

y (1) = h−1
1 (y) =

y − µ(1)

σ(1)
where

[
µ(1), σ(1)

]
= g (1)(y)

ε = h−1
2 (y (1)) =

y (1) − µ(2)

σ(2)
where

[
µ(2), σ(2)

]
= g (2)(y (1))

Deep Learning 2 @ UvA Generative Models (Exact) 43 / 61

Normalising flows

2-step Flow

pY (y) = pE (ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

log pY (y) = log pE (h−1
2 (h−1

1 (y)))−
J∑

j=1

log σ
(2)
j −

J∑
j=1

log σ
(1)
j

y (1) = h−1
1 (y) =

y − µ(1)

σ(1)
where

[
µ(1), σ(1)

]
= g (1)(y)

ε = h−1
2 (y (1)) =

y (1) − µ(2)

σ(2)
where

[
µ(2), σ(2)

]
= g (2)(y (1))

Deep Learning 2 @ UvA Generative Models (Exact) 43 / 61

Normalising flows

2-step Flow

pY (y) = pE (ε)
∣∣∣det Jh−1

2
(y (1))

∣∣∣∣∣∣det Jh−1
1

(y)
∣∣∣

= pE (h−1
2 (h−1

1 (y)))
∣∣∣det Jh−1

2
(h−1

1 (y))
∣∣∣∣∣∣det Jh−1

1
(y)
∣∣∣

log pY (y) = log pE (h−1
2 (h−1

1 (y)))−
J∑

j=1

log σ
(2)
j −

J∑
j=1

log σ
(1)
j

y (1) = h−1
1 (y) =

y − µ(1)

σ(1)
where

[
µ(1), σ(1)

]
= g (1)(y)

ε = h−1
2 (y (1)) =

y (1) − µ(2)

σ(2)
where

[
µ(2), σ(2)

]
= g (2)(y (1))

Deep Learning 2 @ UvA Generative Models (Exact) 43 / 61

Normalising flows

Intermediate Summary

NFs map transform complex distributions to simpler ones (or vice
versa)

Use in density estimation for complex distributions

Jacobian needs to be carefully designed

Sampling is slow because sequential

Deep Learning 2 @ UvA Generative Models (Exact) 44 / 61

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Sampling From the Flow

Recall that y
(1)
j =

yj−µ(1)(y<j)

σ(1)(y<j)
and εj =

y
(1)
j −µ

(2)(y
(1)
<j)

σ(2)(y
(1)
<j)

Hence, y
(1)
j = µ2(y

(1)
<j) + εjσ

(2)(y
(1)
<j) and yj = µ(1)(y<j) + y

(1)
j σ(1)(y<j)

ε1N (0, I) ε2 ε3 ε4

y
(1)
1

y1

y
(1)
2

y2

y
(1)
3

N (0, I)

y3

y
(1)
4

y4

Deep Learning 2 @ UvA Generative Models (Exact) 45 / 61

Figure: Reminder: autoregressive dependencies in the parameterisation (dashed
lines). Given the dashed dependencies, the solid lines are invertible.

• We start with a base sample (all J dimensions).

• And transform coordinates, one at a time. We invert the second step of
the flow.

• Then the first.

• After that, we can run the MADE (with input (y1, 0, 0, 0)>, ‘dummy’
values for y>1) to obtain the mus and sigmas needed to invert the second
coordinate.

• We then invert it (one step at a time).

• and repeat till we are done.

Normalising flows

Summary

Given a deep enough flow, NFs model arbitrary continuous
distributions

They allow for density computation

Need to have simple Jacobian determinants

Depending on direction, one of the two operations (sampling or
density computation) is slower (sequential)

If one of the two computation graphs (for h or h−1) is not known,
then one of the two operations becomes very difficult (if at all
possible)

Deep Learning 2 @ UvA Generative Models (Exact) 46 / 61

Normalising flows

Beyond

We built flows using an affine transformation (with non-zero scale)
because its is trivially invertible,

but we can construct other flows using other bijections, e.g. a
permutation (volume preserving)

or any strictly monotone function
e.g. a neural network with positive weights and strictly monotone
activations

also note that, we require invertibility (strict monotonicity), not
analytical invertibility

Deep Learning 2 @ UvA Generative Models (Exact) 47 / 61

For variable length J, see (IAF; Kingma et al., 2016).

For an NFs that are universal pdf approximators, see (NAF and BNAF;
Huang et al., 2018; De Cao et al., 2020).

Normalising flows

Beyond

We built flows using an affine transformation (with non-zero scale)
because its is trivially invertible,

but we can construct other flows using other bijections, e.g. a
permutation (volume preserving)

or any strictly monotone function
e.g. a neural network with positive weights and strictly monotone
activations

also note that, we require invertibility (strict monotonicity), not
analytical invertibility

Deep Learning 2 @ UvA Generative Models (Exact) 47 / 61

For variable length J, see (IAF; Kingma et al., 2016).

For an NFs that are universal pdf approximators, see (NAF and BNAF;
Huang et al., 2018; De Cao et al., 2020).

Normalising flows

Beyond

We built flows using an affine transformation (with non-zero scale)
because its is trivially invertible,

but we can construct other flows using other bijections, e.g. a
permutation (volume preserving)

or any strictly monotone function
e.g. a neural network with positive weights and strictly monotone
activations

also note that, we require invertibility (strict monotonicity), not
analytical invertibility

Deep Learning 2 @ UvA Generative Models (Exact) 47 / 61

For variable length J, see (IAF; Kingma et al., 2016).

For an NFs that are universal pdf approximators, see (NAF and BNAF;
Huang et al., 2018; De Cao et al., 2020).

Normalising flows

Beyond

We built flows using an affine transformation (with non-zero scale)
because its is trivially invertible,

but we can construct other flows using other bijections, e.g. a
permutation (volume preserving)

or any strictly monotone function
e.g. a neural network with positive weights and strictly monotone
activations

also note that, we require invertibility (strict monotonicity), not
analytical invertibility

Deep Learning 2 @ UvA Generative Models (Exact) 47 / 61

For variable length J, see (IAF; Kingma et al., 2016).

For an NFs that are universal pdf approximators, see (NAF and BNAF;
Huang et al., 2018; De Cao et al., 2020).

Normalising flows

References I

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and
Limitations of Transformers to Recognize Formal Languages. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of
the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7096–7116, Online, November 2020.
Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.576. URL
https://aclanthology.org/2020.emnlp-main.576.

Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

Deep Learning 2 @ UvA Generative Models (Exact) 48 / 61

https://aclanthology.org/2020.emnlp-main.576

Normalising flows

References II

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation:
Encoder–decoder approaches. In Dekai Wu, Marine Carpuat, Xavier
Carreras, and Eva Maria Vecchi, editors, Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation,
pages 103–111, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/W14-4012. URL
https://aclanthology.org/W14-4012.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive
flow. In Ryan P. Adams and Vibhav Gogate, editors, UAI, volume 115 of
Proceedings of machine learning research, pages 1263–1273, Tel Aviv,
Israel, July 2020. PMLR. URL
http://proceedings.mlr.press/v115/de-cao20a.html. tex.pdf:
http://proceedings.mlr.press/v115/de-cao20a/de-cao20a.pdf.

Deep Learning 2 @ UvA Generative Models (Exact) 49 / 61

https://aclanthology.org/W14-4012
http://proceedings.mlr.press/v115/de-cao20a.html

Normalising flows

References III

Li Du, Lucas Torroba Hennigen, Tiago Pimentel, Clara Meister, Jason
Eisner, and Ryan Cotterell. A measure-theoretic characterization of
tight language models. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pages 9744–9770, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.543. URL
https://aclanthology.org/2023.acl-long.543.

Bryan Eikema and Wilker Aziz. Is MAP Decoding All You Need? The
Inadequacy of the Mode in Neural Machine Translation.
arXiv:2005.10283 [cs], May 2020. URL
http://arxiv.org/abs/2005.10283. arXiv: 2005.10283.

Deep Learning 2 @ UvA Generative Models (Exact) 50 / 61

https://aclanthology.org/2023.acl-long.543
http://arxiv.org/abs/2005.10283

Normalising flows

References IV

Bryan Eikema and Wilker Aziz. Sampling-based approximations to
minimum Bayes risk decoding for neural machine translation. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of
the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 10978–10993, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.754. URL
https://aclanthology.org/2022.emnlp-main.754.

Jason Eisner. Inside-outside and forward-backward algorithms are just
backprop (tutorial paper). In Kai-Wei Chang, Ming-Wei Chang,
Alexander Rush, and Vivek Srikumar, editors, Proceedings of the
Workshop on Structured Prediction for NLP, pages 1–17, Austin, TX,
November 2016. Association for Computational Linguistics. doi:
10.18653/v1/W16-5901. URL
https://aclanthology.org/W16-5901.

Deep Learning 2 @ UvA Generative Models (Exact) 51 / 61

https://aclanthology.org/2022.emnlp-main.754
https://aclanthology.org/W16-5901

Normalising flows

References V

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made:
Masked autoencoder for distribution estimation. In International
conference on machine learning, pages 881–889. PMLR, 2015a.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made:
Masked autoencoder for distribution estimation. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 881–889, Lille, France, 07–09 Jul 2015b. PMLR. URL
https://proceedings.mlr.press/v37/germain15.html.

Deep Learning 2 @ UvA Generative Models (Exact) 52 / 61

https://proceedings.mlr.press/v37/germain15.html

Normalising flows

References VI

Elliott Gordon-Rodriguez, Gabriel Loaiza-Ganem, and John Cunningham.
The continuous categorical: a novel simplex-valued exponential family.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 3637–3647. PMLR,
13–18 Jul 2020. URL https:

//proceedings.mlr.press/v119/gordon-rodriguez20a.html.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long
sequences with structured state spaces. In International Conference on
Learning Representations, 2022. URL
https://openreview.net/forum?id=uYLFoz1vlAC.

Deep Learning 2 @ UvA Generative Models (Exact) 53 / 61

https://proceedings.mlr.press/v119/gordon-rodriguez20a.html
https://proceedings.mlr.press/v119/gordon-rodriguez20a.html
https://openreview.net/forum?id=uYLFoz1vlAC

Normalising flows

References VII

Michael Hahn. Theoretical limitations of self-attention in neural sequence
models. Transactions of the Association for Computational Linguistics,
8:156–171, 2020. doi: 10.1162/tacl a 00306. URL
https://aclanthology.org/2020.tacl-1.11.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for
transformers? arXiv preprint arXiv:2402.09963, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. Publisher: MIT Press.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.
Neural Autoregressive Flows. In International Conference on Machine
Learning, pages 2078–2087. PMLR, July 2018. URL
http://proceedings.mlr.press/v80/huang18d.html. ISSN:
2640-3498.

Deep Learning 2 @ UvA Generative Models (Exact) 54 / 61

https://aclanthology.org/2020.tacl-1.11
http://proceedings.mlr.press/v80/huang18d.html

Normalising flows

References VIII

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord,
Alex Graves, and Koray Kavukcuoglu. Neural machine translation in
linear time. arXiv preprint arXiv:1610.10099, 2016.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational
diffusion models. Advances in neural information processing systems,
34:21696–21707, 2021.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improved Variational Inference with Inverse
Autoregressive Flow. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4743–4751. Curran Associates, Inc., 2016.
URL http://papers.nips.cc/paper/

6581-improved-variational-inference-with-inverse-autoregressive-flow.

pdf.

Deep Learning 2 @ UvA Generative Models (Exact) 55 / 61

http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf

Normalising flows

References IX

André FT Martins, Marcos Treviso, António Farinhas, Pedro MQ Aguiar,
Mário AT Figueiredo, Mathieu Blondel, and Vlad Niculae. Sparse
continuous distributions and fenchel-young losses. The Journal of
Machine Learning Research, 23(1):11728–11801, 2022.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and
Sanjeev Khudanpur. Recurrent neural network based language model. In
Interspeech, volume 2, pages 1045–1048. Makuhari, 2010.

Grey Nearing, Deborah Cohen, Vusumuzi Dube, Martin Gauch, Oren
Gilon, Shaun Harrigan, Avinatan Hassidim, Daniel Klotz, Frederik
Kratzert, Asher Metzger, et al. Global prediction of extreme floods in
ungauged watersheds. Nature, 627(8004):559–563, 2024.

Deep Learning 2 @ UvA Generative Models (Exact) 56 / 61

Normalising flows

References X

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016.

Danilo Rezende and Shakir Mohamed. Variational inference with
normalizing flows. In International conference on machine learning,
pages 1530–1538. PMLR, 2015.

Herbert Robbins and Sutton Monro. A stochastic approximation method.
The annals of mathematical statistics, pages 400–407, 1951. Publisher:
JSTOR.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel.
Gradient estimation using stochastic computation graphs. In Advances
in neural information processing systems, pages 3528–3536, 2015.

Deep Learning 2 @ UvA Generative Models (Exact) 57 / 61

Normalising flows

References XI

Noah A. Smith. Linguistic Structure Prediction. Synthesis Lectures on
Human Language Technologies. Morgan and Claypool, May 2011.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya
Ganguli. Deep unsupervised learning using nonequilibrium
thermodynamics. In International conference on machine learning, pages
2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating
gradients of the data distribution. Advances in neural information
processing systems, 32, 2019.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score
matching: A scalable approach to density and score estimation. In
Uncertainty in Artificial Intelligence, pages 574–584. PMLR, 2020.

Deep Learning 2 @ UvA Generative Models (Exact) 58 / 61

Normalising flows

References XII

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin.
Transformers as recognizers of formal languages: A survey on
expressivity. arXiv preprint arXiv:2311.00208, 2023.

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable
density estimator. In Eric P. Xing and Tony Jebara, editors, Proceedings
of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 467–475, Bejing,
China, 22–24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/uria14.html.

Deep Learning 2 @ UvA Generative Models (Exact) 59 / 61

https://proceedings.mlr.press/v32/uria14.html

Normalising flows

References XIII

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray
kavukcuoglu, Oriol Vinyals, and Alex Graves. Conditional image
generation with pixelcnn decoders. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016. URL
https://proceedings.neurips.cc/paper_files/paper/2016/

file/b1301141feffabac455e1f90a7de2054-Paper.pdf.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals,
Alex Graves, et al. Conditional image generation with pixelcnn decoders.
Advances in neural information processing systems, 29, 2016.

Deep Learning 2 @ UvA Generative Models (Exact) 60 / 61

https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf

Normalising flows

References XIV

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
recurrent neural networks. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1747–1756, New York, New York, USA, 20–22 Jun
2016. PMLR. URL
https://proceedings.mlr.press/v48/oord16.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

Pascal Vincent. A connection between score matching and denoising
autoencoders. Neural computation, 23(7):1661–1674, 2011.

Deep Learning 2 @ UvA Generative Models (Exact) 61 / 61

https://proceedings.mlr.press/v48/oord16.html

	Tools for prescribing distributions
	Multivariate

	Parameter Estimation
	Autoregressive Models
	Normalising flows
	References

