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Hello

I am an assistant professor at the Institute for Logic, Language and
Computation (University of Amsterdam). You can check some of my work
here https://probabll.github.io

Stuff I typically work on include

machine learning
approximate (Bayesian) inference, gradient estimation,
normalising flows, latent variables models (e.g., VAEs),

natural language processing
translation, text classification, question answering, transparent and
interpretable models

I teach advanced topics in DL (e.g., deep generative models, approximate
inference) and NLP.
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Some of my classes (in collaboration with UvA colleagues) can be found
at https://uvadl2c.github.io and https://probabll.github.io/

teaching/.

https://probabll.github.io
https://uvadl2c.github.io
https://probabll.github.io/teaching/
https://probabll.github.io/teaching/


Module Overview

1 Representing uncertainty in ML
uncertainty — probabilistic models — tools for prescribing
distributions

2 Generative models (exact)
autoregressive models — normalising flows

3 Generative models (approximate)
energy-based models — score-matching and diffusion

4 Latent variable models
exact inference — variational inference
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How to use this: during the class, don’t go on reading everything you see
on this side. I will walk you through what’s needed. I hope these notes
will help you when you refer back to the content in your own time.



Outline

1 Uncertainty

2 Probabilistic Models

3 Modelling Random Experiments

4 Modelling Observed Random Variables

5 Tools for prescribing distributions
Univariate
Multivariate



Uncertainty

Dictionary definitions

1 the quality of being indeterminate as to magnitude or value; the
amount of variation in a numerical result that is consistent with
observation;

2 the state of not being definitely known or perfectly clear;

3 the state or character of being uncertain in mind; a state of doubt
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1. Too specific. We can be uncertain about non-numerical things.

2. Interesting: uncertainty as a property of the other (what we
observe, contemplate or interact with). But you and I may be
differently uncertain about the same thing (e.g., I don’t know much
about finance, you might).

3. My favourite: uncertainty as a property of the self (i.e., I am
uncertain about stuff, so are you, on occasion we might agree but,
generally, my uncertainty about stuff owes little to yours).
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Uncertainty

Two views

Event-centric uncertainty concerns stochasticity inherent to that which
we contemplate or interact with.

Agent-centric uncertainty concerns our own state of knowledge about
what we contemplate or interact with (independently of those being
stochastic themselves).

The agent-centric view can be argued to generalise the event-centric view
(≈ agents have access to the exact same information and agree to use it
in the same way). (De Finetti, 1974; Lindley, 2013)
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You and I observe a sequence of coin flips, we each represent our uncer-
tainty about the next flip.

• Event-centric approach says our representations must be identical,
else one or both of us is being irrational.

• Agent-centric approach says our representations need not be
identical (e.g., we might possess different information about the
flips and the physics of coins).

You and I read the first half of the lord of the rings, our uncertainty about
the finale need not be the same.

• Event-centric: struggles with the fact that the finale isn’t stochastic
(we cannot have the author rewrite it).

• Agent-centric: one can always express their own uncertainty over
something they lack information about.



Uncertainty

Formal account

A representation of the state of knowledge of an agent. Most theories are
built on two key frameworks:

Possible worlds (Hintikka, 1957, 1961; Menzel, 2023): a set algebra
used to represent knowledge and possibility.

Plausibility measures (Friedman and Halpern, 1996): a tool to order
propositions as to express a preference for those we are less uncertain
about.

Overview of formal frameworks: Halpern (2017).
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Book recommendation

• Overview of formal frameworks: Halpern (2017)



Uncertainty

Possible worlds

You contemplate or interact with the world, but you do not know the
actual state of the world.

You represent a world as a symbol (or collection of attributes) and
you assume the actual world ω is one of a set Ω of possible worlds.

You use subsets of Ω to convey knowledge and possibility (or
propositions).

The set Σ of subsets of Ω you acknowledge as possible form a
σ-algebra (i.e., closed under complementation and countable
union/intersection).
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• For example, if you are contemplating the result of rolling a six-sided
die, you may represent a world (an outcome of the experiment) as a
symbol wk where k is the number of pips the die shows.

• Assuming dice always land on exactly one of their 6 faces (never on
an edge), you take Ω = {w1,w2,w3,w4,w5,w6} to represent all
possible worlds.

• If you speculate the actual world ω is an odd number you make the
proposition that ω is in Aodd = {w ∈ Ω : odd(w)} = {w1,w3,w5}.

• If you know the actual world ω is odd or prime and not one that can
be decomposed as a sum of two other distinct worlds, then you
know ω is in: ({1, 3, 5}︸ ︷︷ ︸

Aodd

∪{2, 3, 5}︸ ︷︷ ︸
Aprime

) ∩ (Ω \ {3, 5})︸ ︷︷ ︸
Anot-sum-of-two-worlds

= {1, 2}
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Uncertainty

Possible worlds – examples

A2 resolves named entities to their Wikidata entry:

a world is a symbol of the kind we , e is a unique id (e.g., Q76 is
Barack Obama);

the universe is Ω = {we : e ∈Wikidata}
{we : citizenship(e,USA) ∧ politician(e)} ⊆ Ω is the proposition that
the actual world is a USA politician

A3 responds to a question on a chat-like tool

a world is a symbol of the kind ws , s is a string of symbols from some
vocabulary Σ;

the universe is Ω = Σ∗

{ws : presidentof(JoeBiden,USA) = parse(s)} ⊆ Ω is the proposition
that the actual world is a sentence that expresses the relation
presidentof(JoeBiden,USA).
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Uncertainty

Plausibility measure

Your uncertainty is qualitatively different for different propositions.

You attach an uncertainty qualifier to each proposition in Σ. A
qualifier is anything you can order (e.g., fractions of a stick, numbers).

(Ω,Σ) is a measurable space, hence you may use a plausibility
measure to give a more detailed representation of your ignorance
about propositions.

Plausibility measures include belief functions (Shafer, 1976),
possibility measures (Dubois and Prade, 1990), ordinal ranking
functions (Goldszmidt and Pearl, 1992), (non-numerical) preference
orders (Friedman and Halpern, 1996), and, of course, probability
(Kolmogorov, 1960).
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• You are at least as uncertain about Aodd,prime = Aodd ∩ Aprime as you
are about Aodd, simply because the later includes the former.

• You may attach 2/6 to Aodd,prime and 3/6 to Aodd and to Aprime. You
may have information about prime numbers being particularly rare
(e.g., your dice was built that way), then you choose a qualifier for
Aprime that’s lower than that of Aodd, and an even lower qualifier for
Aodd,prime.

• Plausibility (Pl) generalises certain aspects of a typical measure
(e.g., it may be non-numerical). You can now convey
Pl(Aodd) ≥ Pl(Aprime) ≥ Pl(Aodd,prime), and much more.

• Under certain documented assumptions (Friedman and Halpern,
1996), they enable something like a ‘calculus of uncertainty’ which
formalises the procedures the agent must follow to incorporate
additional information about the world and revise their uncertainty
representation coherently (in axiomatic probability, this is known as
conditioning).
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Uncertainty

Probability

The most well known plausibility measure.

Probability has been motivated from various angles, the most prominent:

Objectivist: a notion of long-run stable frequency of repeatable events

Subjectivist: a personal quantification of belief, it owes nothing to
sample frequency (though it may coincide with it whenever that
makes sense to an agent), it is constrained only by the axioms of
probability theory and not by any interpretation (as chance or
frequency). (Ramsey, 1931; De Finetti, 1974)
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• Objectivist view is coherent with definition (ii) the state of not
being definitely known or perfectly clear;

• Subjectivist view is coherent with definition (iii) the state or
character of being uncertain in mind; a state of doubt

Both views share the same formal device (i.e., probability measures). The
different interpretations are relevant when discussing strategies to use data
to inform our representation of uncertainty.

Historical overview of different interpretations (Hacking, 1975)



Uncertainty

Probability measure

A function Pr : Σ→ [0, 1] such that

Pr(∅) = 0

Pr(Ω) = 1

and Pr(∪iAi ) =
∑
i

Pr(Ai )︸ ︷︷ ︸
additivity

for pairwise disjoint events Ai
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The significance of (countable) additivity is tremendous.

It can be shown (Radon–Nikodym theorem) that to identify a probability
measure (i.e., over an event space Σ) it is sufficient to identify a probability
density function (which assigns a non-negative density to each outcome,
rather than event) and a base measure.

It is much easier to work with probability density functions than with prob-
ability measures directly, esp when we intend to predict these objects (e.g.,
using NNs) from available information. Pr is a function from Σ → [0, 1]
s.t. countable additivity, a pdf is a function from R to R>0 whose integral
converges (to 1 if properly normalised).



Uncertainty

Statistics

Gives us procedures we can use to fix the “free parameters” of our
favourite framework of uncertainty representation (e.g., the probability
measure) as to be coherent with relevant knowledge and evidence.

Frequentist statistics: deeply rooted in the objectivist interpretation;
procedures are based on repeatedly sampling data and typically
formulated as optimisation problems (e.g., maximum likelihood
estimation).

Bayesian statistics: deeply rooted in subjectivist interpretation;
procedures are based on probability calculus thus formulated as
probabilistic inference problems (e.g., conditioning, marginalisation,
expectation).
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Uncertainty

In ML

We represent our uncertainty about something by identifying a probability
measure over a space of propositions (events) about the variables of
interest; we typically specify a family of such measures and prioritise the
members that are more consistent with observational data (that’s the role
of statistics).
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If we use Frequentist procedures (which we often do, at least in DL), we are
tempted to think that our representation will comply with the objectivist
interpretation of probability. Unfortunately, this isn’t really the case, but
that is a topic for another chat : )

If you are developing a project on a topic such as calibration of NNs (esp
calibration of LMs) then we need to have that chat. In the meantime, you
will find these useful

• Baan et al. (2022): why you should not trust ECE under data
uncertainty and what you can do instead; and what this means for
LMs (Ilia and Aziz, 2024) and conditional generators (Giulianelli
et al., 2023);

• for a more open-ended discussion (Baan et al., 2024)



Uncertainty

Summary

Uncertainty isn’t variance, or entropy, or probability, or statistics, ...

Uncertainty is a state of limited knowledge and it can be represented
from the perspective of the phenomena under study or of the agents
studying those.

Possible worlds (a representation of what is possible) and plausibility
measures (an expression of preferences) give a family of mathematical
tools for uncertainty representation.

Probability is the dominant tool in ML, partly due to its intuitive
foundations (and interpretations), partly due to us having developed
statistics for it, thus enabling data-driven procedures to represent
uncertainty optimally (in some sense of the word).
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Talk recommendation: for insight into the two mainstream views on un-
certainty, watch Kristin Lennox’s All About That Bayes https://youtu.
be/eDMGDhyDxuY?si=skzXj7WC24Jc2nPt

Book recommendation: Lindley (2013) if you want to study uncertainty
(from a probability standpoint) in great generality.

In the context of natural language generation, check (Baan et al., 2023).

https://youtu.be/eDMGDhyDxuY?si=skzXj7WC24Jc2nPt
https://youtu.be/eDMGDhyDxuY?si=skzXj7WC24Jc2nPt
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Probabilistic Models

Probabilistic Models

A probabilistic model prescribes the probability measure of a random
experiment.
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Random experiment: a sample space Ω, an event space Σ = P(Ω), and
a probability measure P : Σ → [0, 1] where P(∅) = 0, P(Ω) = 1 and
P(∪i∈IEi ) =

∑
i∈I P(Ei ) for collections {Ei} of pairwise disjoint events.

There are so many ways in which we can prescribe a probability measure:

• We may specify the probability of events in the event space, one at
a time. This is at least tedious, intricate (we cannot violate
countable additivity), sometimes impossible!

• We may instead specify a probability mass or density function (pmf
or pdf) for outcomes of a random variable X : Ω→ X ⊆ R.
The rv and its pdf fX (x) in turn identify a probability measure via
P(X ∈ A) =

∫
A fX (x)dx .

• We may instead specify the cumulative distribution function (cdf) of

an rv, the cdf FX (x) in turn identifies a pdf via fX (x) = dFX (x)
dx , the

rv and its pdf identify a probability measure.

• We may specify a simulator (e.g., a function from rand() to
outcomes of an rv), the simulator identifies an inverse cdf F−1

X ,
which in turn identifies a cdf, which in turn . . .
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Probabilistic Models

Probabilistic Modelling and Reasoning

Probabilistic modelling concerns the specification of a joint distribution
over random variables of interest.

Probabilistic reasoning concerns fixing a subset of these random variables
to some observations and inferring marginal and conditional distributions
by application of probability calculus.

The latter is also known as probabilistic inference.
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Notation. Capital letters for rvs (e.g., X , Y ), lowercase letters for assign-
ments (e.g., X = x , Y = y), calligraphic letters for range of rvs (e.g., X ,
Y). I use pX for the pdf of X and FX for its cdf. When needed I show
the dependency of the probability density on a parameter θ as follows:
pX (x |θ).

Probability calculus recap. Chain rule pXY (x , y) = pX (x)pY |X (y |x) =

pY (y)pX |Y (x |y). Conditional probability pY |X (y |x) = pXY (x,y)
pX (x) . Marginal-

isation pX (x) =
∫
Y pXY (x , y)dy .



Probabilistic Models

Learning

Oftentimes, we begin specifying a probability distribution by choosing a
class of distributions (e.g., Normal, Exponential, Categorical).

For multivariate data, we may need to choose a factorisation of the joint
distribution.

Model fitting

Maximum likelihood estimation (MLE) singles out a member of the
class (e.g., N (2, 1), Exponential(10), Cat(0.1, 0.2, 0.7)).

Bayesian estimation conditions on available evidence (data and model
assumptions) to update prior beliefs (via probability calculus).

Deep Learning 2 @ UvA Representing Uncertainty in ML 16 / 66
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Probabilistic Models

Reasons for appreciating probabilistic models

Probabilistic models allow us to incorporate assumptions through

the choice of distribution

dependencies among random variables

the way that distributions uses side information

stipulate unobserved data and their properties

They return a distribution over outcomes which can be used to

generate data

account for unobserved data

provide explanation and suggest improvements

inform decision makers

Deep Learning 2 @ UvA Representing Uncertainty in ML 17 / 66



Probabilistic Models

Summary

A probabilistic model prescribes the probability measure of a random
experiment.

Design: we can prescribe probability measures in many ways, some more or
less implicit/indirect (and this will come in very handy).

Learning: we use data and statistics to fit the free parameters of our
model.

Reasoning: we fix a subset of variables and perform marginal and/or
conditional inferences.
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Book recommendation: if you would like to learn all about probabilistic
graphical models (PGMs), check the excellent book by Koller and Fried-
man (2009). I’d recommend Part I (on representation of distributions) to
anyone.
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Modelling Random Experiments

Modelling random experiments

We treat data as outcomes of experiments involving random variables.

A model of the data prescribes a distribution for those random variables.
Ideally, one that is faithful to statistical properties of our observations.
Some applications:

reveal structure hidden in existing data;

support decisions about existing and future data.

The main subject of statistical interest is data (as opposed to tasks).
Think of a task as a potential application of a (good) model of the data.
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Modelling data does not imply solving a predictive task.

For example, a generative classifier is built upon a joint pdf pY (y)pX |Y (x |y)
over labels y ∈ Y and inputs x ∈ X . Making a specific prediction for a
novel input x∗ is a decision problem, oftentimes handled independently of
model specification and learning.

A common decision rule for classification is

y∗ = arg max
c

pY |X (c |x∗) (1a)

= arg max
c

pY (c)pX |Y (x∗|c)

����pX (x∗)
(1b)

A generalisation of it uses a utility function u(c , y) to compare a candidate
c to an outcome of Y |X = x∗:

y∗ = arg max
c

EpY |X=x∗
[u(c ,Y )] (2)

This also works for structure prediction, see an example of it in machine
translation (Eikema and Aziz, 2022).



Modelling Random Experiments

Faithfulness
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Consider the data in the example

• the measurements are continuous and positive

• the sample mean is close to 32

• the sample stddev is close to 16

• they concentrate around a single value (unimodal)

• they stretch to the right (skew)
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Modelling Random Experiments

Hidden structure

A different probabilistic model may posit the presence of two groups mixed
in a single population.

Deep Learning 2 @ UvA Representing Uncertainty in ML 21 / 66

Here the measurements are natural numbers, the sample mean is close to
12.5 and the median is 12.

A Poisson distribution can capture the mean, but not the spread (recall
that the Poisson mean and variance are equal).
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Modelling Random Experiments

Decisions about future data

The heavier tails of the Student’s t reserve much more probability for
unseen data.

Deep Learning 2 @ UvA Representing Uncertainty in ML 22 / 66

Here we observe continuous measurements from a sensor in a car. Data
come in in batches of 100 measurements.

Suppose that if 1% (or more) of the readings drop below 0, the driver is
at risk.
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Here we observe continuous measurements from a sensor in a car. Data
come in in batches of 100 measurements.

Suppose that if 1% (or more) of the readings drop below 0, the driver is
at risk.



Modelling Random Experiments

Summary

We treat data as outcomes of experiments involving random variables.

A model of the data prescribes a distribution for those random variables.

Rarely there is such a thing as a correct model. A model can be useful or
mislead those using it. Ideally, a model

is faithful to statistical properties of our observations

reveals structure/patterns assumed to exist;

supports decisions about existing and future data.

The main subject of statistical interest is data. A good model of the data
has potential to power a task (e.g., a decision-making pipeline).
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Book recommendation: Gelman et al. (2013), if you want to greatly en-
hance your statistical thinking. Andrew Gelman has made the book (and
updates) freely available on his site.
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Modelling Observed Random Variables

Modelling observed random variables

Our goal is to learn a distribution over a set of observed random variables.

Observed random variables are the result of random experiments that have
already happened: e.g., sentences in a collection of news articles, number
of stars in a product review.

Typical use in ML: conditional models.
B We are given some variables (inputs) and we are interested in making
predictions about other variables (outputs)

such inputs are also called predictors (or covariates)

with some probability mass/density, predicted by the model, an
output takes on a certain outcome in a sample space
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Predictor Outcome Sample space

Why did they bother recording
this???

? 1–5 stars

Source: geen standaard compare(‘no step’)=0.5 [0, 1]
MT: no standard

he proposed a famous solution to
an inverse probability problem in
the 18th century

https://en.wikipedia.org/wiki/

Thomas_Bayes

Wen

who is the main mind behind
what we call the Bayesian inter-
pretation of probability?

You might be talking about Bayesian
statistics, though it’s named after
Thomas Bayes (1701–1761), it was
Pierre-Simon Laplace (1749–1827)
who developed most of the theory.

Σ∗
en

Pepper loves the beach! Σ∗
en

That’s not possible! Dat is niet mogelijk! Σ∗
nl

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes
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Modelling Observed Random Variables

Choosing a model family

1 data type: countable (binary, categorical, ordinal), uncountable,
univariate or multivariate, combinatorial, etc.

2 match properties of the data and distribution: overdispersion,
skewness, heavy tails

Deep Learning 2 @ UvA Representing Uncertainty in ML 25 / 66

• Don’t be mislead by data sparsity, collect more measurements and
you will observe uncertainty (Plank, 2022).

• Don’t be mislead by the marginal if you intend to model
conditionally

• Do you expect variance to differ?

• Do you expect skew?

• Bounded support? Multimodality? Asymmetry?

• Unsure about categorical or ordinal treatment?
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Modelling Observed Random Variables

Statistical models parameterised by NNs

Once a family of distributions is in place, we let a neural network predict a
member of the family, which it does by mapping from available
information (e.g., x).

Y |x ∼ Cat(f (x ; θ)) or Y |x ∼ N (µ(x ; θ), σ(x ; θ)2)

we then proceed to estimate parameters θ of the NNs

Deep Learning 2 @ UvA Representing Uncertainty in ML 26 / 66

NNs compute the parameters of the statistical model. We estimate NN
parameters.



Modelling Observed Random Variables

Example - Text classifier

Before DL was popular, we would identifying informative features h(x) of
the available predictor x . We would then map these features to the
parameter of a Categorical distribution (e.g., via a log-linear model):
Y |X = x ∼ Cat(softmax(Wh(x) + b)).

Nowadays, we tend to condition on everything available to us by
learning how to map from arbitrarily complex data to the parameters of
our distributions. We do so with NNs: Y |X = x ∼ Cat(f (x ; θ)).

There’s a lot of research on how to design f (·; θ) and estimate θ effectively.

Deep Learning 2 @ UvA Representing Uncertainty in ML 27 / 66
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In Y |X = x ∼ Cat(f (x ; θ)), f (·; θ) is a NN architecture with parameters
θ, it maps any covariate x , say a long review in English, to the parameters
of the Categorical distribution that by assumption govern the conditional
response variable.
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Modelling Observed Random Variables

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability mass/density p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Representing Uncertainty in ML 28 / 66

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).
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MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) =

∇θ

N∑
s=1

log p(y (s)|x (s), θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function

Deep Learning 2 @ UvA Representing Uncertainty in ML 29 / 66

Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?
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Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random

Deep Learning 2 @ UvA Representing Uncertainty in ML 30 / 66

We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose range is the space of gradient vectors of our model’s log-
likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?
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Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ) with Sm ∼ U(1/N)

= ∇θ
N

M

M∑
m=1

log p(y (sm)|x (sm), θ)︸ ︷︷ ︸
LB(θ)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch

Deep Learning 2 @ UvA Representing Uncertainty in ML 31 / 66

The theory of stochastic optimisation (Robbins and Monro, 1951) tells us
that we will converge to a local optimum of the objective as long as we
take steps that are correct on average. This means we can optimise with
stochastic gradient estimates, for as long as they are unbiased estimates
of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).
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mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).



Modelling Observed Random Variables

Summary – a recipe for supervised learning

Maximum likelihood estimation

tells you which loss to optimise
(i.e. negative log-likelihood)

Automatic differentiation (backprop) with gradient surrogates

a tractable and differentiable forward computation whose backward is
an unbiased estimate of the intended gradient

Stochastic optimisation powered by backprop

general purpose gradient-based optimisers

Our main job is to pick an appropriate family of distributions.
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Paper recommendation: for a comprehensive understanding of stochastic
computation graphs (Schulman et al., 2015).
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Tools for prescribing distributions

Prescribing distributions

We will now discuss various ways to prescribe distributions using deep
learning. For each technique, we will keep an eye on two things:

our ability to assess the probability mass/density of a given outcome

our ability to sample outcomes from the corresponding distribution

We begin with the univariate case and then discuss the multivariate case.
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• assessment: useful for learning (e.g., via approximate MLE).

• sampling: useful for making predictions.



Outline

1 Uncertainty

2 Probabilistic Models

3 Modelling Random Experiments

4 Modelling Observed Random Variables

5 Tools for prescribing distributions
Univariate
Multivariate



Tools for prescribing distributions Univariate

Overview

enumeration

known parametric form

transform a known random source

data augmentation and marginalisation
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Throughout we parameterise the conditional distribution of a random vari-
able Y given X = x .

We use neural network architectures which we denote with a shorthand
notation:

layerO(inputs;parameters)

e.g., linearK (h; θout) uses parameters θout to map some input vector h to
K outputs linearly and deterministically.

We omit the implementation details hoping the layer’s name is suggestive
enough (e.g., linear is implemented as Wh + b with θout = {W,b}).



Tools for prescribing distributions Univariate

Enumerate masses

Predict the probability mass of each and every one of K outcomes.

1
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2
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3
(positive)

k
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k

pmf(k| )

1
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2
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3
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k
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k

c
=

1
c

cdf(k| )

mass assessment: evaluate K masses (e.g., an NN forward pass, t∆)
and look the relevant one up

sampling: linear in K (via inverse cdf or Gumbel trick)

How about countably infinite spaces?
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Sentiment classifier

• Input: a piece of text x

• Output: a distribution over 3 possible sentiment labels (negative,
neutral, positive).

Examples

• encode the text h = encodeD(x ; θenc)

• predict K scores s = (s1, . . . , sK )>

– s = linearK (h; θout)

• map them to the probability simplex: π = t∆(s)

– softmax (see (Niculae and Blondel, 2017) and (Niculae et al.,
2023, §3.2 and 3.3) for an origin story)

– or sparsemax (Martins and Astudillo, 2016)
– or entmaxα (Peters et al., 2019)
– etc.
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neutral, positive).

Examples

• encode the text h = encodeD(x ; θenc)
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Known pmf

Predict the parameter(s) of a known pmf.
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cdf(k| )

Poisson(k|15)
Poisson(k|8)

mass assessment: evaluate the parameter(s) (e.g., NN forward pass)
and the pmf (a few operations)

sampling is typically possible (via inverse cdf method, or some
specialised algorithm)

How about uncountable sample spaces?
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Heard count

• Input: an image x ∈ RH×W×C of a field

• Output: a Poisson distribution over the number of cows in the field.
A Poisson is identified by its rate parameter (a strictly positive
scalar), which we predicted given x as follows

h = encodeD(x; θenc)

λ = softplus(linear1(h; θrate))
(3)

Probability mass of an outcome: Poisson(k |λ) = λk exp(−k)
k!

Inverse cdf method: if icdf(·|λ) is the inverse of the cdf of the rv Y , then
transforming a uniform sample p ∼ U(0, 1) via icdf(p|λ) yields an rv with
the same distribution as Y .
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Known pdf

Predict the parameter(s) of a known pdf.
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Normal(y|2, 22)
Normal(y|15, 0.52)

density assessment: evaluate the parameter(s) (e.g., NN forward
pass) and the pdf (a few operations, assuming analytical form or an
efficient numerical algorithm)
sampling is typically possible (via inverse cdf method, or some
specialised algorithm)

What if not flexible enough?
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Temperature

• Input: an image x ∈ RH×W×C of a car engine

• Output: a Normal distribution over temperature values in Celsius. A
Normal is identified by a location in R and a scale in R>0, which we
predict given x as follows

h = encodeD(x; θenc)

µ = linear1(h; θloc)

σ = softplus(linear1(h; θscale))

(5)

Probability density of an outcome: N (y |µ, σ2) =
exp

(
−(y−µ)2)

2σ2

)
σ
√

2π
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Tools for prescribing distributions Univariate

Unnormalised pdf/pmf

Predict a non-negative score for a given outcome (as opposed to each and
every outcome). This procedure must identify a pdf up to an unknown
normalisation constant.
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cummulative sum (y| )

density assessment: difficult, numerical integration is possible (but
inefficient in high dimensions)

sampling: difficult, requires MC (inefficient in high dimensions) or
MCMC (often slow, asymptotically correct).
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We need to output non-negative values all over the domain, and need the
integral across the domain to converge to a real number (that is, finite).

Here is an example, engineered to meet the requirements: a conic combi-
nation of exponentiated-square basis functions.

h = encodeD(x; θenc)

u = linearC (x; θhid)

v = exp(−u� u) ← C non-negative numbers

s =
C∑

c=1

exp(wc)vc ← non-negative slopes

(7)

For countably infinite or uncountable sample spaces, it may be difficult to
guarantee that the integral of an arbitrary non-negative function converges.

Energy-based models (EBMs), which we will cover in this module, are
examples of such tools.
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CDF

Predict the cumulative probability p for an outcome y :
that is p =

∫
a≤y pdf(a|θ)da
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pdf(y| ) = d
dycdf(y| )

density assessment: requires differentiation (which can be
automated!)

sampling: difficult (requires inverting the cdf)
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We can constrain an NN to specify a non-decreasing function by having
non-negative weights in linear layers (biases are unconstrained), and non-
decreasing activation functions (e.g., tanh, relu, softplus, sigmoid, etc.).

To constrain the output to [0, 1] we may use a sigmoid output, or a convex
combination of C sigmoid outputs.

See, for example, (Huang et al., 2018; De Cao et al., 2020)
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Percentile function - inverse cdf

Predict the outcome y for a given percentile p:
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pdf(y| ) = ( d
dp icdf(p| )) 1

density assessment: possible in some cases (via inverse function
theorem)

sampling: easy by design
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Now the output is an outcome (if Y = R, the output is unconstrained),
the domain of the NN is [0, 1], and the function must be non-decreasing
(as the cdf case).

For y whose inverse p we know (for example, those we sampled via p ∼
U(0, 1) and y = icdf(p|θ)) we can assess the density using autodiff.



Tools for prescribing distributions Univariate

Sampler - bijection

Parameterise a bijective transformation of a known and convenient base
random variable

Assessment and sampling can be made simple, in some cases only one
of the two is simple;

Parameterising one such model takes some skill (to achieve efficient
computations)
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Suppose access to an invertible function (a bijection): x = h−1(y), then

pY (y) = pX (h−1(y))|detJh−1 (y)| (8)

Start from a known pX , for example a Gaussian, and obtain a novel pY ,
more complex than a Gaussian.

It’s possible to assess the density of some outcome y by mapping it to the
corresponding x = h−1(y), assessing its density and the Jacobian.

It’s possible to draw samples, by drawing from the simple pX and then
mapping to the corresponding y = h(x).

Normalising Flows (Rezende and Mohamed, 2015; Kingma et al., 2016;
Papamakarios et al., 2019), which we cover in this module, are an example
of such tool.
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Sampler - general case

Parameterise an arbitrary transformation of a base random variable

Sampling: trivial by design (it costs a forward pass through an NN we
choose)

Assessment: intractable in general! For an outcome y ∈ RO , a base
density pX (x) on RI

pY (y) =

∫
C
pX (x)dx (9)

C = {x : f (x ; θ) = y} (10)

C is the set of all points in RI that f maps to exactly y
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Here f is some deep neural network with I inputs and O outputs (e.g., a
feed forward neural network)

x ∼ N (0, I ) (11)

y = f (x ; θ) (12)

See Generative Adversarial Network (GAN; Goodfellow et al., 2014) and
implicit distributions (Huszár, 2017).
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Marginalise a latent variable - mixture model

Predict the parameters of C known pdfs and the coefficients w of a finite
mixture: p(y |x , θ) =

∑C
z=1 wzp(y |x , θz) with w ∈ ∆C−1.
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k
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pmf(k|w, )
Poisson(k|2)
Poisson(k|14)
0.4 × Poisson(k|2) + 0.6 × Poisson(k|14)

assessment: linear in C
sampling: ancestral sampling (draw a component in linear time, then
draw from that component)
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This simple idea can be used to create very flexible distributions. See,
for example, Farinhas et al. (2022), where the components are defined in
different subsets of ∆.
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Marginalise a latent variable - compounding

Predict a distribution for the parameter(s) of a known parametric family:
e.g.,

∫
R>0

Gamma(λ|α, β)Poisson(y |λ)dλ.
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assessment: typically intractable (some exceptions in the exponential
family), a common solution is a variational lowerbound
sampling: ancestral sampling
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Where the Gamma’s shape α and rate β are predicted by an NN.

Variation: have λ be predicted by an NN that takes x , α, β as inputs.

• assessment: intractable

• sampling: ancestral sampling

Variational auto-encoders (Rezende et al., 2014; Kingma and Welling,
2014), which we cover in this module, are an example of such tool.
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Tools for prescribing distributions Multivariate

Multivariate

For the fixed-dimension case, we may have access to multivariate
generalisations of known pdfs (e.g., MVN).

In general (fixed-dimension or not), we can exploit a factorisation with or
without conditional independence assumptions.

Then, we predict the factors:

direct, or cdf, or sampler/simulator

unnormalised
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Directed

Decompose an outcome into parts y = (w1, . . . ,wN), for example, a
sentence is a sequence of tokens, an image is a sequence of pixels. We fix
an order (e.g., left-to-right, row-wise or column-wise, etc).

Factorise pY |X (y |x) using univariate conditionals.
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Examples of factorisation

1. full conditional independence pY |X (y |x)
ind.
=

∏N
n=1 pW |X (wn|x)

2. Markov model pY |X (y |x)
ind.
=

∏N
n=1 pW |XH(wn|x ,wn−k+1:n−1)

3. chain rule pY |X (y |x) =
∏N

n=1 pW |XH(wn|x ,w<n)
aka autoregressive factorisation

Given a flexible-enough family for the conditionals, (3) can identify any
probability measure, in principle.

See Germain et al. (MADE; 2015) and any decoder-only or encoder-
decoder model (Mikolov et al., 2010; Van den Oord et al., 2016; Oord
et al., 2016; Vaswani et al., 2017)
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Undirected

It’s possible to factorise pY |X (y |x) using unnormalised factors.

For example, a first-order conditional random field
pY |X (y |x) ∝

∏N
n=1 Φ(x ,wn−1,wn) uses factors like Φ(x ,wn−1,wn) > 0.

The familiar constraints apply: non-negativity, finite normalisation
constant.

Density/mass assessment, sampling may be possible in some cases (eg,
first-order CRF) but are intractable in general.
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EBMs: with rather flexible NNs, we can parameterise an unnormalised
model without an explicit factorisation: pY |X (y |x , θ) ∝ NN(x , y ; θ).
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Honourable mentions

Sparse continuous distributions (Martins et al., 2022)

Score matching (implicit generative models) (Vincent, 2011; Song
and Ermon, 2019; Song et al., 2020)

Diffusion processes (Sohl-Dickstein et al., 2015; Kingma et al., 2021)
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We will cover score matching and diffusion in this module.
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Summary

There are various ways to prescribe distributions both univariate and
multivariate.

Predict parameters for known pdfs and cdfs: we predict some finite
(typically small) number of parameters, and evaluate the
mass/density of an outcome using a known function.

For more flexibility we construct novel pdfs or cdfs by predicting
unnormalised densities or parameterising flows and simulators.

For multivariate and structured data we typically exploit a
factorisation into simpler distributions (NNs are particularly good at
representing complex conditioning contexts).

There are various tradeoffs: is mass/density assessment tractable? can we
sample? do we need backward passes? do we need to approximate
normalisation constants?
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Beyond

There’s a lot more to what I said today.

Big open problems involving parameter estimation, probabilistic
inference, and model criticism.

Creative applications for uncertainty representation (e.g.,
out-of-domain or error detection, controllable generation).

Challenging data that may require novel tools.

Augment our uncertainty representation to include uncertainty about
parameters and model family.
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If you are excited about LLMs, they too predict a representation of uncer-
tainty: about the response given the prompt.

They exploit an autoregressive factorisation of the conditional distribution,
their factors are simple Categorical distributions over a vocabulary of to-
kens.

Decision making, probabilistic inference, disentanglement learning, repre-
sentation of epistemic uncertainty, and statistical evaluation are big chal-
lenges in that space. See for example our work on decision making (Eikema
and Aziz, 2020, 2022) and statistical evaluation (Barkhof and Aziz, 2022;
Baan et al., 2022; Giulianelli et al., 2023; Ilia and Aziz, 2024).
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