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What we know so far

Deep probabilistic models: probability distributions parameterised by
neural networks

Objective: lowerbound on log-likelihood (ELBO)

cannot be computed exactly
we resort to Monte Carlo estimation

But the MC estimator is not differentiable

Score function estimator: applicable to any model
Reparameterised gradients
so far seems applicable only to Gaussian variables
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Multivariate calculus recap

Multivariate calculus recap

Let x ∈ RK and let T : RK → RK be differentiable and invertible

y = T (x)

x = T −1(y)
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Multivariate calculus recap

Jacobian

The Jacobian matrix JT (x) of T
assessed at x is the matrix of partial derivatives

Jij =
∂yi
∂xj

Inverse function theorem

JT −1(y) = (JT (x))−1
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Multivariate calculus recap

Differential (or inifinitesimal)

The differential dx of x
refers to an infinitely small change in x

We can relate the differential dy of y = T (x) to dx

Scalar case

dy = T ′(x)dx =
dy

dx
dx =

d

dx
T (x)dx

where dy/dx is the derivative of y wrt x

Multivariate case
dy = |det JT (x)|dx

the absolute value absorbs the orientation
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Multivariate calculus recap

Integration by substitution

We can integrate a function g(x)
by substituting x = T −1(y)∫

g(x)dx

=

∫
g(T −1(y)︸ ︷︷ ︸

x

) |det JT −1(y)|dy︸ ︷︷ ︸
dx

and similarly for a function h(y)∫
h(y)dy =

∫
h(T (x))|det JT (x)|dx
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Multivariate calculus recap

Change of density

Let X take on values in RK with density pX (x)

and recall that y = T (x) and x = T −1(y)

Then T induces a density pY (y) expressed as

pY (y) = pX (T −1(y))|det JT −1(y)|

and then it follows that

pX (x) = pY (T (x))|det JT (x)|
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Reparameterised gradients revisited

Revisiting reparameterised gradients

Let Z take on values in RK with pdf q(z |λ)

The idea is to count on a reparameterisation
a transformation Sλ : RK → RK such that

Sλ(z) ∼ π(ε)

S−1
λ (ε) ∼ q(z |λ)

π(ε) does not depend on parameters λ
we call it a base density

Sλ(z) absorbs dependency on λ
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Reparameterised gradients revisited

Reparameterised expectations

If we are interested in

Eq(z|λ) [g(z)]

=

∫
q(z |λ)g(z)dz

=

∫
π(Sλ(z))|det JSλ(z)|︸ ︷︷ ︸

change of density

g(z)dz

=

∫
π(ε)

∣∣∣det JS−1
λ

(ε)
∣∣∣−1

︸ ︷︷ ︸
inv func theorem

g(S−1
λ (ε)︸ ︷︷ ︸
z

)
∣∣∣det JS−1

λ
(ε)
∣∣∣dε︸ ︷︷ ︸

change of var

=

∫
π(ε)g(S−1

λ (ε))dε = Eπ(ε)

[
g(S−1

λ (ε))
]
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Reparameterised gradients revisited

Reparameterised gradients

For optimisation, we need tractable gradients

∂

∂λ
Eq(z|λ) [g(z)] =

∂

∂λ
Eπ(ε)

[
g(S−1

λ (ε))
]

since now the density does not depend on λ, we can obtain a gradient
estimate

∂

∂λ
Eq(z|λ) [g(z)] = Eπ(ε)

[
∂

∂λ
g(S−1

λ (ε))

]
MC
≈ 1

M

M∑
i=1

εi∼π(ε)

∂

∂λ
g(S−1

λ (εi ))
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Reparameterised gradients revisited

Reparameterised gradients: Gaussian

We have seen one case, namely,
if ε ∼ N (0, I ) and Z ∼ N (µ, σ2)

Then
Z ∼ µ+ σε

and
∂

∂λ
EN (z|µ,σ2) [g(z)]

= EN (0,I )

[
∂

∂λ
g(z = µ+ σε)

]
= EN (0,I )

[
∂

∂z
g(z = µ+ σε)

∂z

∂λ

]
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Reparameterised gradients revisited

Reparameterised gradients: Inverse cdf

Inverse cdf

for univariate Z with pdf fZ (z) and cdf FZ (z)

P ∼ U(0, 1) Z ∼ F−1
Z (P)

where F−1
Z (p) is the quantile function

Example: Kumaraswamy distribution

fZ (z ; a, b) = abza−1(1− za)b−1

FZ (z ; a, b) = 1− (1− za)b

F−1
Z (p; a, b) = (1− (1− p)1/b)1/a
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Reparameterised gradients revisited

Beyond

Many interesting densities cannot be easily reparameterised
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Beyond

Many interesting densities cannot be easily reparameterised
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Beyond

Many interesting densities cannot be easily reparameterised
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Reparameterised gradients revisited

Beyond

Many interesting densities cannot be easily reparameterised

von Mises-Fisher
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ADVI

Automatic Differentiation VI

Motivation

many models have intractable posteriors
their normalising constants (evidence) lack analytic solutions

but many models are differentiable
that’s the main constraint for using NNs

Reparameterised gradients are a step towards automating VI for
differentiable models

but not every model of interest employs rvs for which a
reparameterisation is known
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ADVI

Example: Weibull-Poisson model

Suppose we have some ordinal data which we assume to be
Poisson-distributed

z |r , k ∼Weibull(r , k) r ∈ R>0, k ∈ R>0

X |z ∼ Poisson(z) z ∈ R>0

and suppose we want to impose a Weibull prior on the Poisson rate
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ADVI

VI for Weibull-Poisson model

Generative model

p(x , z |r , k) = p(z |r , k)p(x |z)

Marginal

p(x |r , k) =

∫
R>0

p(z |r , k)p(x |z)dz

ELBO
Eq(z|λ) [log p(x , z |r , k)] + H (q(z))

Can we make q(z |λ) Gaussian?
No! supp(N (z |µ, σ2)) = R
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ADVI

Strategy

Build a change of variable into the model

p(x , z |r , k) = p(z |r , k)p(x |z)

= Weibull(z |r , k) Poisson(x |z)

= Weibull(

exp(ζ)

︸ ︷︷ ︸
z

|r , k) Poisson(x |

exp(ζ)

︸ ︷︷ ︸
z

)

|det Jexp(ζ)|

= f (x , ζ)

ELBO
Eq(ζ|λ) [f (x , ζ)] + H (q(ζ))

Can we use a Gaussian approximate posterior?

Yes!
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ADVI

Differentiable models

We focus on differentiable probability models

p(x , z) = p(x |z)p(z)

members of this class have continuous latent variables z

and the gradient ∇z log p(x , z) is valid within the support of the prior
supp(p(z)) = {z ∈ RK : p(z) > 0} ⊆ RK
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ADVI

Why do we need differentiable models?

Recall the gradient of the ELBO

∂

∂λ
Eq(z;λ) [log p(x , z)] +

∂

∂λ
H (q(z ;λ))

Reparameterisation requires ∂
∂z

∂

∂λ
Eq(z;λ) [log p(x , z)]

= Eπ(ε)

[
∂

∂λ
log p(x , z = S−1

λ (ε))

]
= Eπ(ε)

[
∂

∂z
log p(x , z)

∂

∂λ
S−1
λ (ε)

]
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ADVI

VI optimisation problem

Let’s focus on the design and optimisation of the variational approximation

arg min
q(z)

KL (q(z) || p(z |x))

To automate the search for a variational approximation q(z) we must
ensure that

supp(q(z)) ⊆ supp(p(z |x))

otherwise KL is not a real number
KL (q || p) = Eq [log q]− Eq [log p]

def
= ∞
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ADVI

Support matching constraint

So let’s constrain q(z) to a family Q whose support is included in the
support of the posterior

arg min
q(z)∈Q

KL (q(z) || p(z |x))

where
Q = {q(z) : supp(q(z)) ⊆ supp(p(z |x))}

But what is the support of p(z |x)?

typically the same as the support of p(z)
as long as p(x , z) > 0 if p(z) > 0
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ADVI

Parametric family

So let’s constrain q(z) to a family Q whose support is included in the
support of the prior

arg min
q(z)∈Q

KL (q(z) || p(z |x))

where
Q = {q(z ;λ) : λ ∈ Λ, supp(q(z ;λ)) ⊆ supp(p(z))}

a parameter vector λ picks out a member of the family
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ADVI

Constrained optimisation for the ELBO

We maximise the ELBO

arg max
λ∈Λ

Eq(z;λ) [log p(x , z)] + H (q(z ;λ))

subject to

Q = {q(z ;λ) : λ ∈ Λ, supp(q(z ;λ)) ⊆ supp(p(z))}

Often there can be two constraints here

support matching constraint

Λ may be constrained to a subset of RD

e.g. univariate Gaussian location lives in R but scale lives in R>0
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ADVI

Parameters in real coordinate space

Consider the Gaussian case: Z ∼ N (µ, σ)

how can we obtain µ ∈ Rd and σ ∈ Rd
>0

from λµ ∈ Rd and λσ ∈ Rd?

µ = λµ

σ = exp(λσ) or σ = softplus(λσ)

The vMF distribution is parameterised by a unit-norm vector v
how can we get v from λv ∈ Rd?

v = λv
‖λv‖2

It is typically possible to work with unconstrained parameters, it only takes
an appropriate activation
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ADVI

Constrained optimisation for the ELBO

We maximise the ELBO

arg max
λ∈RD

Eq(z;λ) [log p(x , z)] + H (q(z ;λ))

subject to

Q = {q(z ;λ) : λ ∈ RD , supp(q(z ;λ)) ⊆ supp(p(z))}
There is one constraint left

support of q(z ;λ) depends on the choice of prior
and thus may be a subset of RK
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ADVI

ADVI

A gradient-based black-box VI procedure

1 Custom parameter space

Appropriate transformations of unconstrained parameters!

2 Custom supp(p(z))

Express z ∈ supp(p(z)) ⊆ RK as a transformation of some
unconstrained ζ ∈ RK

Pick a variational family over the entire real coordinate space
basically, pick a Gaussian!

3 Intractable expectations

Reparameterised Gradients!
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ADVI

Joint model in real coordinate space

Let’s introduce an invertible and differentiable transformation

T : supp(p(z))→ RK

and define a transformed variable ζ ∈ RK

ζ = T (z)

Recall that we have a joint density p(x , z)
which we can use to construct p(x , ζ)

p(x , ζ) = p(x ,

T −1(ζ)

︸ ︷︷ ︸
z

)|det J

T −1

(

ζ

)|
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ADVI

VI in real coordinate space

We can design a posterior approximation whose support is RK

q(ζ|λ) =
K∏

k=1

q(ζk |λ)︸ ︷︷ ︸
mean field

=
K∏

k=1

N (ζk |µk , σ2
k)

where

µk = λµk for λµk ∈ RK

σk = softplus(λσk ) for λσk ∈ RK
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ADVI

ELBO in real coordinate space

log p(x)

= log

∫
p(x , z)dz

= log

∫
p(x , T −1(ζ))|det JT −1(ζ)|dζ

= log

∫
q(ζ)

p(x , T −1(ζ))|det JT −1(ζ)|
q(ζ)

dζ

JI
≥
∫

q(ζ) log
p(x , T −1(ζ))|det JT −1(ζ)|

q(ζ)
dζ

= Eq(ζ)

[
log p(x , T −1(ζ)) + log |det JT −1(ζ)|

]
+ H (q(ζ))
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ADVI

Reparameterised ELBO

Recall that for Gaussians we have a standardisation procedure
Sλ(ζ) ∼ N (ε|0, I )

Eq(ζ|λ)

[
log p(x , T −1(ζ)) + log |det JT −1 (ζ)|

]
+ H (q(ζ|λ))

= EN (ε|0,I )

log p(x , T −1(

ζ︷ ︸︸ ︷
S−1
λ (ε))︸ ︷︷ ︸
z

) + log
∣∣det JT −1 (S−1

λ (ε))
∣∣


+ H (q(ζ|λ))
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ADVI

Gradient estimate

For εi ∼ N (0, I )

∂

∂λ
ELBO(λ)

MC
≈ 1

M

M∑
i=1

∂

∂λ
log p(x |T −1(S−1

λ (εi )))︸ ︷︷ ︸
likelihood of z

+
∂

∂λ
log p(T −1(S−1

λ (εi )))︸ ︷︷ ︸
prior density of z

+
∂

∂λ
log
∣∣det JT −1 (S−1

λ (εi ))
∣∣︸ ︷︷ ︸

change of volume

+
∂

∂λ
H (q(ζ;λ))︸ ︷︷ ︸

analaytic
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ADVI

Practical tips

Many software packages know how to transform the support of various
distributions

Stan

Tensorflow tf.probability

Pytorch torch.distributions
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Example

Weibull-Poisson model

Build a change of variable into the model

p(x , z |r , k) = p(z |r , k)p(x |ρ)

= Weibull(z |r , k) Poisson(x |z)

= Weibull(

log−1(ζ)

︸ ︷︷ ︸
z

|r , k) Poisson(x |

log−1(ζ)

︸ ︷︷ ︸
z

)

∣∣det Jlog−1 (ζ)
∣∣

= p(x , z = log−1(ζ))
∣∣det Jlog−1 (ζ)

∣∣
ELBO

Eq(ζ|λ) [] + H (q(ζ))

Eφ(ε)

[
log p(x , z = log−1(S−1(ε)))

∣∣det Jlog−1 (S−1(ε))
∣∣]+ H (q(ζ))
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Visualisation

Images from Kucukelbir et al. (2017)
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Wait... no deep learning?

Sure! Parameters may well be predicted by NNs

approximate posterior location and scale

Weibull rate and shape

Everything is now differentiable, reparameterisable, and the optimisation is
unconstrained!
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Example

Summary

ADVI is a big step towards blackbox VI

we knew how to map parameters to the unconstrained real coordinate
space

now we also know how to map latent variables to unconstrained real
coordinate space

it takes a change of variable built into the model

Think of ADVI as reparameterised gradients and autodiff expanded to
many more models!
What’s left? Our posteriors are still rather simple, aren’t they?
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