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Goals for this session

© Parameterise complex distributions using neural networks
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Outline

@ Tools for prescribing joint distributions



Tools for prescribing joint distributions

Prescribing distributions

We will now discuss various ways to prescribe distributions using deep
learning. For each technique, we will keep an eye on two things:

@ our ability to assess the probability mass/density of a given outcome
@ our ability to sample outcomes from the corresponding distribution

We begin with the univariate case and then discuss the multivariate case.
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Tools for prescribing joint distributions

Direct (aka ‘locally normalised’)

Predict the parameter of a known pdf (or pmf).
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Temperature

RHX WxC

Input: an image x € of a car engine

Output: a distribution N(u(x), o(x)?) over temperature values in Celsius
where the Gaussian location and scale are predicted given x as follows
h = encodep(x; fenc)
w(x) = lineary (h; 6ioc) (1)
o(x) = softplus(linear; (h; fscale))



Tools for prescribing joint distributions

Direct (aka ‘locally normalised’)

Predict the parameter of a known pdf (or pmf).
@ density/mass assessment is typically feasible (by design)
@ sampling is typically possible (via inverse cdf method, or some
specialised algorithm)
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Heard count
Input: an image x € RH*WXC of 3 field

Output: a distribution Poisson(A(x)) over the number of cows in the field,
where the Poisson rate is predicted given x as follows

h = encodep(x; fenc) (2)
)\(x) = softplus(linearl(h; Grate))



Tools for prescribing joint distributions

Parameterise a cdf F (maps from an outcome to the cumulative
probability p)

@ density assessment: requires differentiation (which can be
automated!)

e sampling: easy if analytically invertible (which is rare)
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Temperature

Let Fo(y; ®) = exp(—exp(¢ — y)) be the CDF of a Gumbel distribution

with location ¢.
Input: an image x € RFXWXC of 3 car engine

Output: a convex combination of K simple CDFs

Fly) =Y wiFo(y: ¢)

k=1

where w € Ak_1 and ¢ € R¥ are predicted given x as follows

h = encodep(X; Oenc)
¢ = lineary (h; Ojocs)

w = softmax(linear (h; Omix))
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Tools for prescribing joint distributions

Sampler - inverse cdf

Parameterise a quantile function Q (maps from a probability value p to

the outome)
@ density assessment: difficult

@ sampling: easy by design

for a pair (p,y) such that y = Q(p; 6), the inverse function theorem

enables density assessment
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Temperature

Let Qo(p; ®) = ¢ — log(— log(p)) be the quantile function (inverse CDF)

of a Gumbel distribution with location ¢.
Input: an image x € RFXWXC of 3 car engine

Output: a conical combination of K simple quantile functions

Q(p) = Z wi Qo(p; ¢k)

k=1

where w € R and ¢ € RK are predicted given x as follows

h = encodep(x; fenc)
¢ = lineark (h; O)ocs)
w = softplus(linear (h; Omix))



Tools for prescribing joint distributions

Sampler - bijection

Parameterise a bijective transformation of a known and convenient base
random variable

@ Assessment and sampling can be made simple, in some cases only one
of the two is simple;

e Parameterising one such model takes some skill (to achieve efficient
computations)

See Normalising Flows in our Advanced Generative Models module.
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Suppose access to an invertible function (a bijection): x = h=1(y), then

py(y) = px(h~(y))|detJp-1(y)| (13)

Start from a known px, for example a Gaussian, and obtain a novel py,
more complex than a Gaussian.

It's possible to assess the density of some outcome y by mapping it to the
corresponding x = h™%(y), assessing its density and the Jacobian.

It's possible to draw samples, by drawing from the simple px and then
mapping to the corresponding y = h(x).



Tools for prescribing joint distributions

Sampler - general case

Parameterise an arbitrary transformation of a base random variable

e Sampling: trivial by design (it costs a forward pass through an NN we

choose)
@ Assessment: intractable in generall For an outcome y € R?, a base Here f is some deep neural network with / inputs and O outputs (e.g., a
density px(x) on R/ feed forward neural network)
X~ N(0,1) (16)
=f(x;0 17
py(y) = /cpx(X)dx (14) y = f(x;0) (17)

C={x:f(x;0)=y} (15)

C is the set of all points in R/ that f maps to exactly y

See Generative Adversarial Networks (GANSs) in our Advanced Generative
Models module
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Tools for prescribing joint distributions

Unnormalised

Input: a piece of text x about some entity and a set {y,}"_; of variable size

Parameterise a non-negative measure or an ener, .. . o . . q
& gy containing (potentially relevant) Wikipedia pages retrieved by an algorithm

@ Assessment: depends on the complexity of computing a normalisation

constant Output: a discrete distribution assigning probability proportional to
e possibly tractable for finite countable sample spaces, but intractable in exp(nn) to entity y, being about the entity mentioned in x where
general
e the normalisation constant might diverge for infinite sample spaces
(leading to an improper distribution) t = encodep(x; fenc) (18)
e Sampling: generally intractable, but possible for certain (simple) for n & [N] (19)
classes of models (e.g., first-order CRF). Tractable options include h, = encodep(yn; enc) (20)
MCMC and approximate MCMC (e.g., stochastic gradient Langevin sn = relu(lineary([t, h,]; Ohia)) (21)
dynamics). N = lineary (Sp; Gout) (22)
See energy-based models (EBM) in our Advanced Generative Models
module

Deep Learning 2 @ UvA Introduction 9/16



Tools for prescribing joint distributions

Multivariate

For the fixed-dimension case, we may have access to multivariate
generalisations of known pdfs (e.g., MVN).

In general (fixed-dimension or not), we can exploit a factorisation with or
without conditional independence assumptions.

Then, we predict the factors:
e direct, or cdf, or sampler/simulator

@ unnormalised
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Examples of factorisation: y = (wy, ..., wy)

full conditional independence py|x(y|x) ind. H,,N:1 pw|x (wWa|x)

ind.
Markov model pyx(y[x) = I, Pw|XH(WalX, Wn—kt1:0-1)

. N
chain rule py|x(y|x) = [1,—1 Pw|xx(Walx, w<p)
aka autoregressive factorisation

first-order condi/’\clional random field
pyix(y|x) o< [T,—1 ®(x, ¥n—1,¥n) where ®(x, yn_1,yn) >0



Tools for prescribing joint distributions

Remarks

There are various ways to prescribe distributions both univariate and
multivariate.

Ideas based on predicting parameters for known pdfs and cdfs, but also
ideas based on parameterising simulators/samplers.

For multivariate and structured data, factorisation of complex joint
distributions is key.

There are various tradeoffs: is mass/density assessment tractable? can we

sample? do we need backward passes? do we need to solve normalisation
constants?
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Next class

Another tool for prescribing joint distributions: augment a joint
distribution over observed random variables with unobserved random
variables and perform marginal inference.

Modelling unobserved data (the case of discrete latent variables and exact
inference)
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Tools for prescribing joint distributions
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