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Vision DIFFMask: Faithful Interpretation of Vision Transformers with Differentiable Patch Masking
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Introduction Qualitative Results

Quantitative Results

We introduce a novel post-hoc interpretation method for the Vision Transformer, based on DiffMask [1].
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Positive perturbation curves. We measure ViT's performance when removing pixels
with a high attribution score, following [2]. High KL divergence / low accuracy are better.
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Faithfulness Test

Conclusion

1 instance 7 instances 4 instances 1 instance 6 instances

e \We train a ViT to count the number of red patches in an image We introduced VisioN DirFFMask, a new method for post-hoc interpretability of images.
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VisioN DiIFrMaAsk’s attributions are experimentally proven to be consistent and faithful, while
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e In this scenario, we know what the model should be looking at to make
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also plausible to what a human would expect.
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a decision: either or the red or all the non-red patches
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Our method is able to generalize well across different datasets (please check our demo &)

e \Vision DiffMask is the only method that is truly faithful to the behavior
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that we anticipate.
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choosing the red patches or their complement




